These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 31017762)

  • 21. Characterizing the Semiconductor Nanocrystal Surface through Chemical Reactivity.
    Dones Lassalle CY; Kelm JE; Dempsey JL
    Acc Chem Res; 2023 Jul; 56(13):1744-1755. PubMed ID: 37307510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable electronic properties by ligand coverage control in PbS nanocrystal assemblies.
    Liu L; Bisri SZ; Ishida Y; Aida T; Iwasa Y
    Nanoscale; 2019 Nov; 11(43):20467-20474. PubMed ID: 31647086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile assembly of size- and shape-tunable IV-VI nanocrystals into superlattices.
    Wang Y; Dai Q; Zou B; Yu WW; Liu B; Zou G
    Langmuir; 2010 Dec; 26(24):19129-35. PubMed ID: 21117614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices.
    Novák J; Banerjee R; Kornowski A; Jankowski M; André A; Weller H; Schreiber F; Scheele M
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22526-33. PubMed ID: 27504626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals.
    Ye X; Zhu C; Ercius P; Raja SN; He B; Jones MR; Hauwiller MR; Liu Y; Xu T; Alivisatos AP
    Nat Commun; 2015 Dec; 6():10052. PubMed ID: 26628256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication.
    Huang X; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2021 Mar; 143(11):4234-4243. PubMed ID: 33687203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy.
    Ye X; Chen J; Diroll BT; Murray CB
    Nano Lett; 2013 Mar; 13(3):1291-7. PubMed ID: 23418862
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revealing Structure and Crystallographic Orientation of Soft Epitaxial Assembly of Nanocrystals by Grazing Incidence X-ray Scattering.
    Maiti S; André A; Maiti S; Hodas M; Jankowski M; Scheele M; Schreiber F
    J Phys Chem Lett; 2019 Oct; 10(20):6324-6330. PubMed ID: 31539471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface.
    Dong A; Chen J; Vora PM; Kikkawa JM; Murray CB
    Nature; 2010 Jul; 466(7305):474-7. PubMed ID: 20651688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A General Approach to Stabilize Nanocrystal Superlattices by Covalently Bonded Ligands.
    Wang S; Lu S; Tian X; Liu W; Si Y; Yang Y; Qiu H; Zhang H; Li J
    ACS Nano; 2023 Feb; 17(3):2792-2801. PubMed ID: 36651568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Assembly of One-Dimensional Nanocrystal Superlattice Chains Mediated by Molecular Clusters.
    Zhang X; Lv L; Ji L; Guo G; Liu L; Han D; Wang B; Tu Y; Hu J; Yang D; Dong A
    J Am Chem Soc; 2016 Mar; 138(10):3290-3. PubMed ID: 26936281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligands on Nanocrystal Surfaces, the
    Hens Z
    Acc Chem Res; 2023 Jun; 56(12):1623-1633. PubMed ID: 37221857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oriented Linear Self-Assembly of Colloidal Nanocrystals through Regioselective Formation of Hydrogen-Bonded Supramolecular Bridges.
    Wan S; Gao Y; Zhang Z; Wu F; Zheng Z; Chen H; Xi X; Yang D; Li T; Nie Z; Dong A
    J Am Chem Soc; 2024 May; 146(20):14225-14234. PubMed ID: 38717289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrostatic-Driven Gelation of Colloidal Nanocrystals.
    Berestok T; Guardia P; Ibáñez M; Meyns M; Colombo M; Kovalenko MV; Peiró F; Cabot A
    Langmuir; 2018 Aug; 34(31):9167-9174. PubMed ID: 30015491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces.
    Li R; Bian K; Hanrath T; Bassett WA; Wang Z
    J Am Chem Soc; 2014 Aug; 136(34):12047-55. PubMed ID: 25100031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Ligands as Permeation Barrier in the Growth and Assembly of Anisotropic Semiconductor Nanocrystals.
    Kim D; Lee DC
    J Phys Chem Lett; 2020 Apr; 11(7):2647-2657. PubMed ID: 32175742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.
    Wei J; Schaeffer N; Pileni MP
    J Am Chem Soc; 2015 Nov; 137(46):14773-84. PubMed ID: 26549642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices.
    Wang W; Zhang M; Pan Z; Biesold GM; Liang S; Rao H; Lin Z; Zhong X
    Chem Rev; 2022 Feb; 122(3):4091-4162. PubMed ID: 34968050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.