These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 31017839)

  • 41. Sparing of Descending Axons Rescues Interneuron Plasticity in the Lumbar Cord to Allow Adaptive Learning After Thoracic Spinal Cord Injury.
    Hansen CN; Faw TD; White S; Buford JA; Grau JW; Basso DM
    Front Neural Circuits; 2016; 10():11. PubMed ID: 26973469
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats.
    Bareyre FM; Kerschensteiner M; Raineteau O; Mettenleiter TC; Weinmann O; Schwab ME
    Nat Neurosci; 2004 Mar; 7(3):269-77. PubMed ID: 14966523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time course of anatomical regeneration of descending brainstem neurons and behavioral recovery in spinal-transected lamprey.
    Davis GR; McClellan AD
    Brain Res; 1993 Jan; 602(1):131-7. PubMed ID: 8448650
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The functional properties of synapses made by regenerated axons across spinal cord lesion sites in lamprey.
    Parker D
    Neural Regen Res; 2022 Oct; 17(10):2272-2277. PubMed ID: 35259849
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 46. Recovery of locomotion after spinal cord injury: some facts and mechanisms.
    Rossignol S; Frigon A
    Annu Rev Neurosci; 2011; 34():413-40. PubMed ID: 21469957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Time course of locomotor recovery and functional regeneration in spinal-transected lamprey: kinematics and electromyography.
    Davis GR; Troxel MT; Kohler VJ; Grossmann EM; McClellan AD
    Exp Brain Res; 1993; 97(1):83-95. PubMed ID: 8131834
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spontaneous regeneration of the serotonergic descending innervation in the sea lamprey after spinal cord injury.
    Cornide-Petronio ME; Ruiz MS; Barreiro-Iglesias A; Rodicio MC
    J Neurotrauma; 2011 Dec; 28(12):2535-40. PubMed ID: 21568687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activity-dependent metaplasticity of inhibitory and excitatory synaptic transmission in the lamprey spinal cord locomotor network.
    Parker D; Grillner S
    J Neurosci; 1999 Mar; 19(5):1647-56. PubMed ID: 10024351
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure.
    Côté MP; Murray M; Lemay MA
    J Neurotrauma; 2017 May; 34(10):1841-1857. PubMed ID: 27762657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat.
    Hendriks WT; Eggers R; Ruitenberg MJ; Blits B; Hamers FP; Verhaagen J; Boer GJ
    J Neurotrauma; 2006 Jan; 23(1):18-35. PubMed ID: 16430370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of propriospinal interneurons in recovery from spinal cord injury.
    Flynn JR; Graham BA; Galea MP; Callister RJ
    Neuropharmacology; 2011 Apr; 60(5):809-22. PubMed ID: 21251920
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional plasticity following spinal cord lesions.
    Frigon A; Rossignol S
    Prog Brain Res; 2006; 157():231-260. PubMed ID: 17167915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrophysiological characterization of spontaneous recovery in deep dorsal horn interneurons after incomplete spinal cord injury.
    Rank MM; Flynn JR; Galea MP; Callister R; Callister RJ
    Exp Neurol; 2015 Sep; 271():468-78. PubMed ID: 26177044
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection.
    Hanslik KL; Allen SR; Harkenrider TL; Fogerson SM; Guadarrama E; Morgan JR
    PLoS One; 2019; 14(1):e0204193. PubMed ID: 30699109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection.
    Bui TV; Stifani N; Akay T; Brownstone RM
    Elife; 2016 Dec; 5():. PubMed ID: 27977000
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.
    Kaegi S; Schwab ME; Dietz V; Fouad K
    Eur J Neurosci; 2002 Jul; 16(2):249-58. PubMed ID: 12169107
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury.
    Li WY; Wang Y; Zhai FG; Sun P; Cheng YX; Deng LX; Wang ZY
    Neural Plast; 2017; 2017():1621629. PubMed ID: 28884027
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A leech model for homeostatic plasticity and motor network recovery after loss of descending inputs.
    Lane BJ
    J Neurophysiol; 2016 Apr; 115(4):1752-4. PubMed ID: 26424582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid functional recovery after spinal cord injury in young rats.
    Brown KM; Wolfe BB; Wrathall JR
    J Neurotrauma; 2005 May; 22(5):559-74. PubMed ID: 15892601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.