These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31017888)

  • 1. Revealing evolutionary constraints on proteins through sequence analysis.
    Wang SW; Bitbol AF; Wingreen NS
    PLoS Comput Biol; 2019 Apr; 15(4):e1007010. PubMed ID: 31017888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of phylogeny on the inference of functional sectors from protein sequence data.
    Dietler N; Abbara A; Choudhury S; Bitbol AF
    PLoS Comput Biol; 2024 Sep; 20(9):e1012091. PubMed ID: 39312591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein sectors: statistical coupling analysis versus conservation.
    Teşileanu T; Colwell LJ; Leibler S
    PLoS Comput Biol; 2015 Feb; 11(2):e1004091. PubMed ID: 25723535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions.
    Gloor GB; Martin LC; Wahl LM; Dunn SD
    Biochemistry; 2005 May; 44(19):7156-65. PubMed ID: 15882054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution.
    Wolf MY; Wolf YI; Koonin EV
    Biol Direct; 2008 Oct; 3():40. PubMed ID: 18840284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.
    Cheng G; Qian B; Samudrala R; Baker D
    Nucleic Acids Res; 2005; 33(18):5861-7. PubMed ID: 16224101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix.
    Ndhlovu A; Hazelhurst S; Durand PM
    BMC Bioinformatics; 2015 Aug; 16():255. PubMed ID: 26269100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics identification of coevolving residues.
    Dickson RJ; Gloor GB
    Methods Mol Biol; 2014; 1123():223-43. PubMed ID: 24510270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and structure of the sequence space of repeat proteins.
    Marchi J; Galpern EA; Espada R; Ferreiro DU; Walczak AM; Mora T
    PLoS Comput Biol; 2019 Aug; 15(8):e1007282. PubMed ID: 31415557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elements of coevolution in biological sequences.
    Rivoire O
    Phys Rev Lett; 2013 Apr; 110(17):178102. PubMed ID: 23679784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein meta-functional signatures from combining sequence, structure, evolution, and amino acid property information.
    Wang K; Horst JA; Cheng G; Nickle DC; Samudrala R
    PLoS Comput Biol; 2008 Sep; 4(9):e1000181. PubMed ID: 18818722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction.
    Dunn SD; Wahl LM; Gloor GB
    Bioinformatics; 2008 Feb; 24(3):333-40. PubMed ID: 18057019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using evolutionary information to find specificity-determining and co-evolving residues.
    Kolesov G; Mirny LA
    Methods Mol Biol; 2009; 541():421-48. PubMed ID: 19381538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MultiSeq: unifying sequence and structure data for evolutionary analysis.
    Roberts E; Eargle J; Wright D; Luthey-Schulten Z
    BMC Bioinformatics; 2006 Aug; 7():382. PubMed ID: 16914055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate simulation and detection of coevolution signals in multiple sequence alignments.
    Ackerman SH; Tillier ER; Gatti DL
    PLoS One; 2012; 7(10):e47108. PubMed ID: 23091608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family.
    Lee Y; Mick J; Furdui C; Beamer LJ
    PLoS One; 2012; 7(6):e38114. PubMed ID: 22685552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epistatic contributions promote the unification of incompatible models of neutral molecular evolution.
    de la Paz JA; Nartey CM; Yuvaraj M; Morcos F
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5873-5882. PubMed ID: 32123092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of latent periodicity in amino acid sequences of protein families.
    Turutina VP; Laskin AA; Kudryashov NA; Skryabin KG; Korotkov EV
    Biochemistry (Mosc); 2006 Jan; 71(1):18-31. PubMed ID: 16457614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scoredist: a simple and robust protein sequence distance estimator.
    Sonnhammer EL; Hollich V
    BMC Bioinformatics; 2005 Apr; 6():108. PubMed ID: 15857510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.