These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31017888)

  • 21. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information.
    Buslje CM; Santos J; Delfino JM; Nielsen M
    Bioinformatics; 2009 May; 25(9):1125-31. PubMed ID: 19276150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bi-factor analysis based on noise-reduction (BIFANR): a new algorithm for detecting coevolving amino acid sites in proteins.
    Liu J; Duan X; Sun J; Yin Y; Li G; Wang L; Liu B
    PLoS One; 2013; 8(11):e79764. PubMed ID: 24278175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.
    Little DY; Chen L
    PLoS One; 2009; 4(3):e4762. PubMed ID: 19274093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection and sequence/structure mapping of biophysical constraints to protein variation in saturated mutational libraries and protein sequence alignments with a dedicated server.
    Abriata LA; Bovigny C; Dal Peraro M
    BMC Bioinformatics; 2016 Jun; 17(1):242. PubMed ID: 27315797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracting phylogenetic dimensions of coevolution reveals hidden functional signals.
    Colavin A; Atolia E; Bitbol AF; Huang KC
    Sci Rep; 2022 Jan; 12(1):820. PubMed ID: 35039514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DIVAA: analysis of amino acid diversity in multiple aligned protein sequences.
    Rodi DJ; Mandava S; Makowski L
    Bioinformatics; 2004 Dec; 20(18):3481-9. PubMed ID: 15284106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments.
    Tillier ER; Lui TW
    Bioinformatics; 2003 Apr; 19(6):750-5. PubMed ID: 12691987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteins associated with diseases show enhanced sequence correlation between charged residues.
    Dima RI; Thirumalai D
    Bioinformatics; 2004 Oct; 20(15):2345-54. PubMed ID: 15073020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional effects of mutations in proteins can be predicted and interpreted by guided selection of sequence covariation information.
    Cocco S; Posani L; Monasson R
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2312335121. PubMed ID: 38889151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CoeViz: a web-based tool for coevolution analysis of protein residues.
    Baker FN; Porollo A
    BMC Bioinformatics; 2016 Mar; 17():119. PubMed ID: 26956673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nonadaptive origin of a beneficial trait: in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins.
    Pagan RF; Massey SE
    J Mol Evol; 2014 Feb; 78(2):130-9. PubMed ID: 24362542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new method for revealing correlated mutations under the structural and functional constraints in proteins.
    Lee BC; Kim D
    Bioinformatics; 2009 Oct; 25(19):2506-13. PubMed ID: 19628501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino Acid Encoding Methods for Protein Sequences: A Comprehensive Review and Assessment.
    Jing X; Dong Q; Hong D; Lu R
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1918-1931. PubMed ID: 30998480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inferring property selection pressure from positional residue conservation.
    Hoberman R; Klein-Seetharaman J; Rosenfeld R
    Appl Bioinformatics; 2004; 3(2-3):167-79. PubMed ID: 15693742
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein sectors: evolutionary units of three-dimensional structure.
    Halabi N; Rivoire O; Leibler S; Ranganathan R
    Cell; 2009 Aug; 138(4):774-86. PubMed ID: 19703402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence harmony: detecting functional specificity from alignments.
    Feenstra KA; Pirovano W; Krab K; Heringa J
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W495-8. PubMed ID: 17584793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rosetta design with co-evolutionary information retains protein function.
    Schmitz S; Ertelt M; Merkl R; Meiler J
    PLoS Comput Biol; 2021 Jan; 17(1):e1008568. PubMed ID: 33465067
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary rates at codon sites may be used to align sequences and infer protein domain function.
    Durand PM; Hazelhurst S; Coetzer TL
    BMC Bioinformatics; 2010 Mar; 11():151. PubMed ID: 20334658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional region prediction with a set of appropriate homologous sequences--an index for sequence selection by integrating structure and sequence information with spatial statistics.
    Nemoto W; Toh H
    BMC Struct Biol; 2012 May; 12():11. PubMed ID: 22643026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular evolution of protein conformational changes revealed by a network of evolutionarily coupled residues.
    Jeon J; Nam HJ; Choi YS; Yang JS; Hwang J; Kim S
    Mol Biol Evol; 2011 Sep; 28(9):2675-85. PubMed ID: 21470969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.