These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31018087)

  • 1. Endocytosing Escherichia coli as a Whole-Cell Biocatalyst of Fatty Acids.
    Shin J; Yu J; Park M; Kim C; Kim H; Park Y; Ban C; Seydametova E; Song YH; Shin CS; Chung KH; Woo JM; Chung H; Park JB; Kweon DH
    ACS Synth Biol; 2019 May; 8(5):1055-1066. PubMed ID: 31018087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL.
    Sudheer PDVN; Seo D; Kim EJ; Chauhan S; Chunawala JR; Choi KY
    Enzyme Microb Technol; 2018 Dec; 119():45-51. PubMed ID: 30243386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous supply of glucose and glycerol enhances biotransformation of ricinoleic acid to (E)-11-(heptanoyloxy) undec-9-enoic acid in recombinant Escherichia coli.
    Cho YH; Kim SJ; Kim HW; Kim JY; Gwak JS; Chung D; Kim KH; Park K; Park YC
    J Biotechnol; 2017 Jul; 253():34-39. PubMed ID: 28536060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving catalytic activity of the Baeyer-Villiger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid.
    Woo JM; Jeon EY; Seo EJ; Seo JH; Lee DY; Yeon YJ; Park JB
    Sci Rep; 2018 Jul; 8(1):10280. PubMed ID: 29980730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli.
    Cho YH; Kim SJ; Kim JY; Lee DH; Park K; Park YC
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7407-7416. PubMed ID: 29936545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane.
    Jeon EY; Song JW; Cha HJ; Lee SM; Lee J; Park JB
    J Biotechnol; 2018 Sep; 281():161-167. PubMed ID: 30016739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Display of membrane proteins on the heterologous caveolae carved by caveolin-1 in the Escherichia coli cytoplasm.
    Shin J; Jung YH; Cho DH; Park M; Lee KE; Yang Y; Jeong C; Sung BH; Sohn JH; Park JB; Kweon DH
    Enzyme Microb Technol; 2015 Nov; 79-80():55-62. PubMed ID: 26320715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of Baeyer-Villiger monooxygenase-based Escherichia coli biocatalyst for large scale biotransformation of ricinoleic acid into (Z)-11-(heptanoyloxy)undec-9-enoic acid.
    Seo JH; Kim HH; Jeon EY; Song YH; Shin CS; Park JB
    Sci Rep; 2016 Jun; 6():28223. PubMed ID: 27311560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing acid tolerance of Escherichia coli via viroporin-mediated export of protons and its application for efficient whole-cell biotransformation.
    Shin J; Jin YS; Park YC; Park JB; Lee YO; Kim SK; Kweon DH
    Metab Eng; 2021 Sep; 67():277-284. PubMed ID: 34280569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels.
    Otis JP; Shen MC; Quinlivan V; Anderson JL; Farber SA
    Dis Model Mech; 2017 Mar; 10(3):283-295. PubMed ID: 28130355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake of long-chain fatty acids in HepG2 cells involves caveolae: analysis of a novel pathway.
    Pohl J; Ring A; Stremmel W
    J Lipid Res; 2002 Sep; 43(9):1390-9. PubMed ID: 12235170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts.
    Ring A; Le Lay S; Pohl J; Verkade P; Stremmel W
    Biochim Biophys Acta; 2006 Apr; 1761(4):416-23. PubMed ID: 16702023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid hydration activity of a recombinant Escherichia coli-based biocatalyst is improved through targeting the oleate hydratase into the periplasm.
    Jung SM; Seo JH; Lee JH; Park JB; Seo JH
    Biotechnol J; 2015 Dec; 10(12):1887-93. PubMed ID: 26429801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae.
    Zimnicka AM; Husain YS; Shajahan AN; Sverdlov M; Chaga O; Chen Z; Toth PT; Klomp J; Karginov AV; Tiruppathi C; Malik AB; Minshall RD
    Mol Biol Cell; 2016 Jul; 27(13):2090-106. PubMed ID: 27170175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolins/caveolae protect adipocytes from fatty acid-mediated lipotoxicity.
    Meshulam T; Breen MR; Liu L; Parton RG; Pilch PF
    J Lipid Res; 2011 Aug; 52(8):1526-32. PubMed ID: 21652731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression levels of chaperones influence biotransformation activity of recombinant Escherichia coli expressing Micrococcus luteus alcohol dehydrogenase and Pseudomonas putida Baeyer-Villiger monooxygenase.
    Baek AH; Jeon EY; Lee SM; Park JB
    Biotechnol Bioeng; 2015 May; 112(5):889-95. PubMed ID: 25545273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the Glutamic Acid-Dependent Acid Resistance System in Escherichia coli BL21(DE3) Leads to Increase of the Fatty Acid Biotransformation Activity.
    Woo JM; Kim JW; Song JW; Blank LM; Park JB
    PLoS One; 2016; 11(9):e0163265. PubMed ID: 27681369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the metabolism of unsaturated fatty acids. I. Synthesis and identification of 6-hydroxydodec-3-cis-enoic acid, the final metabolite of ricinoleic acid by Escherichia coli K-12.
    Mizugaki M; Fukuyama H; Sakamoto T; Yamanaka H
    Chem Pharm Bull (Tokyo); 1978 Aug; 26(8):2417-21. PubMed ID: 361271
    [No Abstract]   [Full Text] [Related]  

  • 19. Maximization of cell viability rather than biocatalyst activity improves whole-cell ω-oxyfunctionalization performance.
    Kadisch M; Julsing MK; Schrewe M; Jehmlich N; Scheer B; von Bergen M; Schmid A; Bühler B
    Biotechnol Bioeng; 2017 Apr; 114(4):874-884. PubMed ID: 27883174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational selection of biphasic reaction systems for geranyl glucoside production by Escherichia coli whole-cell biocatalysts.
    Priebe X; Daschner M; Schwab W; Weuster-Botz D
    Enzyme Microb Technol; 2018 May; 112():79-87. PubMed ID: 29499785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.