These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31018087)

  • 21. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Liu L
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2183-91. PubMed ID: 26552798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled regioselectivity of fatty acid oxidation by whole cells producing cytochrome P450BM-3 monooxygenase under varied dissolved oxygen concentrations.
    Schneider S; Wubbolts MG; Oesterhelt G; Sanglard D; Witholt B
    Biotechnol Bioeng; 1999 Aug; 64(3):333-41. PubMed ID: 10397870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of proline in the membrane re-entrant helix of caveolin-1.
    Aoki S; Thomas A; Decaffmeyer M; Brasseur R; Epand RM
    J Biol Chem; 2010 Oct; 285(43):33371-33380. PubMed ID: 20729193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth temperatures and various concentrations of ricinoleic acid affect fatty acid composition in two strains of Hansenula polymorpha.
    Rakpuang W
    Pak J Biol Sci; 2009 Jul; 12(13):986-90. PubMed ID: 19817127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Caveolin-1 activates Rab5 and enhances endocytosis through direct interaction.
    Hagiwara M; Shirai Y; Nomura R; Sasaki M; Kobayashi K; Tadokoro T; Yamamoto Y
    Biochem Biophys Res Commun; 2009 Jan; 378(1):73-8. PubMed ID: 19013132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caveolin-1-Knockout Mouse as a Model of Inflammatory Diseases.
    Codrici E; Albulescu L; Popescu ID; Mihai S; Enciu AM; Albulescu R; Tanase C; Hinescu ME
    J Immunol Res; 2018; 2018():2498576. PubMed ID: 30246033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of cellular caveolae in bacterial entry into mast cells.
    Shin JS; Gao Z; Abraham SN
    Science; 2000 Aug; 289(5480):785-8. PubMed ID: 10926542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.
    Mougeolle A; Poussard S; Decossas M; Lamaze C; Lambert O; Dargelos E
    PLoS One; 2015; 10(3):e0122654. PubMed ID: 25799323
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of fatty acids and caveolin-1 in tumor necrosis factor alpha-induced endothelial cell activation.
    Wang L; Lim EJ; Toborek M; Hennig B
    Metabolism; 2008 Oct; 57(10):1328-39. PubMed ID: 18803934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal.
    Copeland CA; Han B; Tiwari A; Austin ED; Loyd JE; West JD; Kenworthy AK
    Mol Biol Cell; 2017 Nov; 28(22):3095-3111. PubMed ID: 28904206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of enhanced green fluorescent protein cytosolic delivery mediated by modified cell-penetrating peptide due to high overexpression of Caveolin-1.
    Okuda A; Sugai K; Okuda S
    Biochem Biophys Res Commun; 2024 Nov; 733():150586. PubMed ID: 39197200
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting.
    Senju Y; Itoh Y; Takano K; Hamada S; Suetsugu S
    J Cell Sci; 2011 Jun; 124(Pt 12):2032-40. PubMed ID: 21610094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent progress in the topology, structure, and oligomerization of caveolin: a building block of caveolae.
    Root KT; Plucinsky SM; Glover KJ
    Curr Top Membr; 2015; 75():305-36. PubMed ID: 26015287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell foundry with high product specificity and catalytic activity for 21-deoxycortisol biotransformation.
    Xiong S; Wang Y; Yao M; Liu H; Zhou X; Xiao W; Yuan Y
    Microb Cell Fact; 2017 Jun; 16(1):105. PubMed ID: 28610588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism of hydroxy fatty acids. I. Metabolic conversion of ricinoleic acid by a certain microorganism to 8-D-hydroxy tetradec-cis-5-enoic acid.
    OKUI S; UCHIYAMA M; MIZUGAKI M
    J Biochem; 1963 Apr; 53():265-70. PubMed ID: 13939875
    [No Abstract]   [Full Text] [Related]  

  • 37. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids.
    Stremmel W; Pohl L; Ring A; Herrmann T
    Lipids; 2001 Sep; 36(9):981-9. PubMed ID: 11724471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial synthesis of plant oxylipins from γ-linolenic acid through designed biotransformation pathways.
    Kim SU; Kim KR; Kim JW; Kim S; Kwon YU; Oh DK; Park JB
    J Agric Food Chem; 2015 Mar; 63(10):2773-81. PubMed ID: 25715320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of D1 dopamine receptor trafficking and signaling by caveolin-1.
    Kong MM; Hasbi A; Mattocks M; Fan T; O'Dowd BF; George SR
    Mol Pharmacol; 2007 Nov; 72(5):1157-70. PubMed ID: 17699686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.