These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31018090)

  • 1. Role of Heterojunction in Charge Carrier Separation in Coexposed Anatase (001)-(101) Surfaces.
    Di Liberto G; Tosoni S; Pacchioni G
    J Phys Chem Lett; 2019 May; 10(10):2372-2377. PubMed ID: 31018090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface.
    Zhu H; Yang Q; Liu D; Liu D; Zhang W; Chu Z; Wang X; Yan S; Li Z; Zou Z
    J Phys Chem Lett; 2020 Nov; 11(21):9184-9194. PubMed ID: 33058679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen doping in coexposed (001)-(101) anatase TiO
    Di Liberto G; Tosoni S; Pacchioni G
    Phys Chem Chem Phys; 2019 Oct; 21(38):21497-21505. PubMed ID: 31535113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface.
    Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT
    J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction.
    Wang C; Zhang X; Wei Y; Kong L; Chang F; Zheng H; Wu L; Zhi J; Liu Y
    Dalton Trans; 2015 Aug; 44(29):13331-9. PubMed ID: 26131909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomistic Explanation for Interlayer Charge Transfer in Metal-Semiconductor Nanocomposites: The Case of Silver and Anatase.
    Di Liberto G; Pifferi V; Lo Presti L; Ceotto M; Falciola L
    J Phys Chem Lett; 2017 Nov; 8(21):5372-5377. PubMed ID: 29048166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nature of SrTiO
    Di Liberto G; Tosoni S; Illas F; Pacchioni G
    J Chem Phys; 2020 May; 152(18):184704. PubMed ID: 32414268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design of Semiconductor Heterojunctions for Photocatalysis.
    Di Liberto G; Cipriano LA; Tosoni S; Pacchioni G
    Chemistry; 2021 Sep; 27(53):13306-13317. PubMed ID: 34264526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical treatment of semiconductor heterojunctions for photocatalysis: the WO
    Di Liberto G; Tosoni S; Pacchioni G
    J Phys Condens Matter; 2019 Oct; 31(43):434001. PubMed ID: 31282386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial Engineering Determines Band Alignment and Steers Charge Separation and Recombination at an Inorganic Perovskite Quantum Dot/WS
    Wang S; Luo Q; Fang WH; Long R
    J Phys Chem Lett; 2019 Mar; 10(6):1234-1241. PubMed ID: 30818951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of interfaces and charge trapping sites in photocatalytic mixed-phase TiO2 from first principles modeling.
    Garcia JC; Nolan M; Deskins NA
    J Chem Phys; 2015 Jan; 142(2):024708. PubMed ID: 25591378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic mechanism of charge separation upon photoexcitation at the dye-semiconductor interface for photovoltaic applications.
    Jiao Y; Ding Z; Meng S
    Phys Chem Chem Phys; 2011 Aug; 13(29):13196-201. PubMed ID: 21709923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.
    Nazir S; Behtash M; Cheng J; Luo J; Yang K
    Phys Chem Chem Phys; 2016 Jan; 18(4):2379-88. PubMed ID: 26562134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic properties of the interface between p-CuI and anatase-phase n-TiO2 single crystal and nanoparticulate surfaces: a photoemission study.
    Kumarasinghe AR; Flavell WR; Thomas AG; Mallick AK; Tsoutsou D; Chatwin C; Rayner S; Kirkham P; Warren S; Patel S; Christian P; O'Brien P; Grätzel M; Hengerer R
    J Chem Phys; 2007 Sep; 127(11):114703. PubMed ID: 17887866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles.
    Yu J; Zhou P; Li Q
    Phys Chem Chem Phys; 2013 Aug; 15(29):12040-7. PubMed ID: 23426398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic properties of nickel-doped TiO₂ anatase.
    Jensen S; Kilin DS
    J Phys Condens Matter; 2015 Apr; 27(13):134207. PubMed ID: 25767110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity.
    Liu C; Han R; Ji H; Sun T; Zhao J; Chen N; Chen J; Guo X; Hou W; Ding W
    Phys Chem Chem Phys; 2016 Jan; 18(2):801-10. PubMed ID: 26626533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of high photocatalytic properties in the mixed-phase TiO2: a first-principles theoretical study.
    Ju MG; Sun G; Wang J; Meng Q; Liang W
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12885-92. PubMed ID: 24964379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time first-principles calculations of ultrafast carrier dynamics of SnSe/TiO
    Deng ZY; Feng HJ
    J Phys Condens Matter; 2022 Jun; 34(35):. PubMed ID: 35709706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.