These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31018097)

  • 1. Advances in the Use of Microfluidics to Study Crystallization Fundamentals.
    Candoni N; Grossier R; Lagaize M; Veesler S
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():59-83. PubMed ID: 31018097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.
    Zheng B; Gerdts CJ; Ismagilov RF
    Curr Opin Struct Biol; 2005 Oct; 15(5):548-55. PubMed ID: 16154351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling High Throughput Microfluidics and Small-Angle X-ray Scattering to Study Protein Crystallization from Solution.
    Pham N; Radajewski D; Round A; Brennich M; Pernot P; Biscans B; Bonneté F; Teychené S
    Anal Chem; 2017 Feb; 89(4):2282-2287. PubMed ID: 28192906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip.
    Li L; Ismagilov RF
    Annu Rev Biophys; 2010; 39():139-58. PubMed ID: 20192773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniaturization of the Whole Process of Protein Crystallographic Analysis by a Microfluidic Droplet Robot: From Nanoliter-Scale Purified Proteins to Diffraction-Quality Crystals.
    Wang JW; Gao J; Wang HF; Jin QH; Rao B; Deng W; Cao Y; Lei M; Ye S; Fang Q
    Anal Chem; 2019 Aug; 91(15):10132-10140. PubMed ID: 31276402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients.
    Su Z; He J; Zhou P; Huang L; Zhou J
    Lab Chip; 2020 Jun; 20(11):1907-1916. PubMed ID: 32420560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data collection from crystals grown in microfluidic droplets.
    Babnigg G; Sherrell D; Kim Y; Johnson JL; Nocek B; Tan K; Axford D; Li H; Bigelow L; Welk L; Endres M; Owen RL; Joachimiak A
    Acta Crystallogr D Struct Biol; 2022 Aug; 78(Pt 8):997-1009. PubMed ID: 35916224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS).
    Gerdts CJ; Elliott M; Lovell S; Mixon MB; Napuli AJ; Staker BL; Nollert P; Stewart L
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1116-22. PubMed ID: 19020349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction.
    Gerard CJJ; Ferry G; Vuillard LM; Boutin JA; Chavas LMG; Huet T; Ferte N; Grossier R; Candoni N; Veesler S
    Acta Crystallogr F Struct Biol Commun; 2017 Oct; 73(Pt 10):574-578. PubMed ID: 28994406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.
    Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seeded droplet microfluidic system for small molecule crystallization.
    Garg N; Tona R; Martin P; Martin-Soladana PM; Ward G; Douillet N; Lai D
    Lab Chip; 2020 May; 20(10):1815-1826. PubMed ID: 32322845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical detection techniques for droplet microfluidics--a review.
    Zhu Y; Fang Q
    Anal Chim Acta; 2013 Jul; 787():24-35. PubMed ID: 23830418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
    Li L; Mustafi D; Fu Q; Tereshko V; Chen DL; Tice JD; Ismagilov RF
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19243-8. PubMed ID: 17159147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A low-cost, high-throughput microfluidic nano-culture platform for functional metagenomics.
    Kaur M; Ferreiro A; Hung CY; Dantas G; Ramasubramanian AK
    Biotechnol Prog; 2023 Mar; 39(2):e3317. PubMed ID: 36514196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.
    Zhu Y; Zhu LN; Guo R; Cui HJ; Ye S; Fang Q
    Sci Rep; 2014 May; 4():5046. PubMed ID: 24854085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
    Chan HF; Ma S; Tian J; Leong KW
    Nanoscale; 2017 Mar; 9(10):3485-3495. PubMed ID: 28239692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Protein Crystallization in an Integrated Droplet-Based Microfluidic Platform.
    Ferreira J; Castro F
    Methods Mol Biol; 2023; 2652():347-359. PubMed ID: 37093486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and measurement of the phase behavior of aqueous solutions using microfluidics.
    Shim JU; Cristobal G; Link DR; Thorsen T; Jia Y; Piattelli K; Fraden S
    J Am Chem Soc; 2007 Jul; 129(28):8825-35. PubMed ID: 17580868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T; Thomas S; Griffiths AD; Nicaud JM; Drevelle A; Rossignol T
    Microb Cell Fact; 2017 Jan; 16(1):18. PubMed ID: 28143479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.