These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31018097)

  • 41. Salvage and storage of infectious disease protein targets in the SSGCID high-throughput crystallization pathway using microfluidics.
    Christensen J; Gerdts CJ; Clifton MC; Stewart L
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Sep; 67(Pt 9):1022-6. PubMed ID: 21904044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Throughput Microfluidics for the Screening of Yeast Libraries.
    Huang M; Joensson HN; Nielsen J
    Methods Mol Biol; 2018; 1671():307-317. PubMed ID: 29170967
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of concentration and volume gradients in microfluidic droplet arrays for protein crystallization screening.
    Chao WC; Collins J; Wang SW; Li GP; Bachman M; Lee AP
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2623-6. PubMed ID: 17270813
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A power-free, parallel loading microfluidic reactor array for biochemical screening.
    Liu Y; Li G
    Sci Rep; 2018 Sep; 8(1):13664. PubMed ID: 30209328
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactions in droplets in microfluidic channels.
    Song H; Chen DL; Ismagilov RF
    Angew Chem Int Ed Engl; 2006 Nov; 45(44):7336-56. PubMed ID: 17086584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. X-ray transparent microfluidic chips for high-throughput screening and optimization of
    Schieferstein JM; Pawate AS; Sun C; Wan F; Sheraden PN; Broecker J; Ernst OP; Gennis RB; Kenis PJA
    Biomicrofluidics; 2017 Mar; 11(2):024118. PubMed ID: 28469762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High throughput pH optimization of protein crystallization.
    Meged R; Dym O; Sussman JL
    Methods Mol Biol; 2008; 426():411-8. PubMed ID: 18542880
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iterative screen optimization maximizes the efficiency of macromolecular crystallization.
    Jones HG; Wrapp D; Gilman MSA; Battles MB; Wang N; Sacerdote S; Chuang GY; Kwong PD; McLellan JS
    Acta Crystallogr F Struct Biol Commun; 2019 Feb; 75(Pt 2):123-131. PubMed ID: 30713164
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics.
    Beneyton T; Wijaya IP; Postros P; Najah M; Leblond P; Couvent A; Mayot E; Griffiths AD; Drevelle A
    Sci Rep; 2016 Jun; 6():27223. PubMed ID: 27270141
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene-based microfluidics for serial crystallography.
    Sui S; Wang Y; Kolewe KW; Srajer V; Henning R; Schiffman JD; Dimitrakopoulos C; Perry SL
    Lab Chip; 2016 Aug; 16(16):3082-96. PubMed ID: 27241728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Droplet-based microfluidic platform for high-throughput, multi-parameter screening of photosensitizer activity.
    Cho S; Kang DK; Sim S; Geier F; Kim JY; Niu X; Edel JB; Chang SI; Wootton RC; Elvira KS; deMello AJ
    Anal Chem; 2013 Sep; 85(18):8866-72. PubMed ID: 23937555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids.
    Morissette SL; Almarsson O; Peterson ML; Remenar JF; Read MJ; Lemmo AV; Ellis S; Cima MJ; Gardner CR
    Adv Drug Deliv Rev; 2004 Feb; 56(3):275-300. PubMed ID: 14962582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystallizing proteins on the basis of their precipitation diagram determined using a microfluidic formulator.
    Sommer MO; Larsen S
    J Synchrotron Radiat; 2005 Nov; 12(Pt 6):779-85. PubMed ID: 16239748
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Droplet microfluidics for high-throughput biological assays.
    Guo MT; Rotem A; Heyman JA; Weitz DA
    Lab Chip; 2012 Jun; 12(12):2146-55. PubMed ID: 22318506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics.
    Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V
    Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Swan probe: A nanoliter-scale and high-throughput sampling interface for coupling electrospray ionization mass spectrometry with microfluidic droplet array and multiwell plate.
    Jin DQ; Zhu Y; Fang Q
    Anal Chem; 2014 Nov; 86(21):10796-803. PubMed ID: 25302930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Development and application of a droplet-based microfluidic high-throughput screening of Pichia pastoris].
    Lü T; Tu R; Yuan H; Liu H; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2019 Jul; 35(7):1317-1325. PubMed ID: 31328488
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation of the phase diagrams of chiral praziquantel.
    Liu Y; Wang X; Wang JK; Ching CB
    Chirality; 2006 May; 18(4):259-64. PubMed ID: 16521119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.