These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 31018101)
1. Single Nanoparticle Electrochemistry. Patrice FT; Qiu K; Ying YL; Long YT Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):347-370. PubMed ID: 31018101 [TBL] [Abstract][Full Text] [Related]
2. Single-Nanoparticle Electrochemistry through Immobilization and Collision. Anderson TJ; Zhang B Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817 [TBL] [Abstract][Full Text] [Related]
3. Tracking the Electrocatalytic Activity of a Single Palladium Nanoparticle for the Hydrogen Evolution Reaction. Chen M; Lu SM; Peng YY; Ding Z; Long YT Chemistry; 2021 Aug; 27(46):11799-11803. PubMed ID: 34101910 [TBL] [Abstract][Full Text] [Related]
4. Nanoconfined Electrochemical Sensing of Single Silver Nanoparticles with a Wireless Nanopore Electrode. Yu RJ; Xu SW; Paul S; Ying YL; Cui LF; Daiguji H; Hsu WL; Long YT ACS Sens; 2021 Feb; 6(2):335-339. PubMed ID: 33373192 [TBL] [Abstract][Full Text] [Related]
5. Real-time monitoring of electrochemical reactions on single nanoparticles by dark-field and Raman microscopy. Qiu K; Fato TP; Wang PY; Long YT Dalton Trans; 2019 Mar; 48(12):3809-3814. PubMed ID: 30734793 [TBL] [Abstract][Full Text] [Related]
6. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428 [TBL] [Abstract][Full Text] [Related]
7. Seeing Is Not Believing: Filtering Effects on Random Nature in Electrochemical Measurements of Single-Entity Collision. Ma H; Zhong CB; Ying YL; Long YT ACS Meas Sci Au; 2022 Aug; 2(4):325-331. PubMed ID: 36785567 [TBL] [Abstract][Full Text] [Related]
8. Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement. Ma H; Chen JF; Wang HF; Hu PJ; Ma W; Long YT Nat Commun; 2020 May; 11(1):2307. PubMed ID: 32385284 [TBL] [Abstract][Full Text] [Related]
9. Surface Functionalization of Metal Nanoparticles by Conjugated Metal-Ligand Interfacial Bonds: Impacts on Intraparticle Charge Transfer. Hu P; Chen L; Kang X; Chen S Acc Chem Res; 2016; 49(10):2251-2260. PubMed ID: 27690382 [TBL] [Abstract][Full Text] [Related]
10. Influence of Charged Self-Assembled Monolayers on Single Nanoparticle Collision. Dery L; Dery S; Gross E; Mandler D Anal Chem; 2023 Feb; 95(5):2789-2795. PubMed ID: 36700557 [TBL] [Abstract][Full Text] [Related]
11. Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. Hao R; Fan Y; Zhang B J Am Chem Soc; 2017 Sep; 139(35):12274-12282. PubMed ID: 28799330 [TBL] [Abstract][Full Text] [Related]
12. One at a time: counting single-nanoparticle/electrode collisions for accurate particle sizing by overcoming the instability of gold nanoparticles under electrolytic conditions. Qiu D; Wang S; Zheng Y; Deng Z Nanotechnology; 2013 Dec; 24(50):505707. PubMed ID: 24269991 [TBL] [Abstract][Full Text] [Related]
13. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles. Fang Y; Wang H; Yu H; Liu X; Wang W; Chen HY; Tao NJ Acc Chem Res; 2016 Nov; 49(11):2614-2624. PubMed ID: 27662069 [TBL] [Abstract][Full Text] [Related]
14. Understanding the Dynamic Potential Distribution at the Electrode Interface by Stochastic Collision Electrochemistry. Lu SM; Chen JF; Peng YY; Ma W; Ma H; Wang HF; Hu P; Long YT J Am Chem Soc; 2021 Aug; 143(32):12428-12432. PubMed ID: 34347459 [TBL] [Abstract][Full Text] [Related]
15. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry. Lu SM; Li MY; Long YT J Phys Chem Lett; 2022 Jun; 13(21):4653-4659. PubMed ID: 35604854 [TBL] [Abstract][Full Text] [Related]
16. Current research on single-entity electrochemistry for soft nanoparticle detection: Introduction to detection methods and applications. Nguyen THT; Lee J; Kim HY; Nam KM; Kim BK Biosens Bioelectron; 2020 Mar; 151():111999. PubMed ID: 31999594 [TBL] [Abstract][Full Text] [Related]
17. Intrinsic electrocatalytic activity of a single IrO Du M; Meng Y; Zhu G; Gao M; Hsu HY; Liu F Nanoscale; 2020 Nov; 12(43):22014-22021. PubMed ID: 33140807 [TBL] [Abstract][Full Text] [Related]
18. Combined optical and electrochemical methods for studying electrochemistry at the single molecule and single particle level: recent progress and perspectives. Hill CM; Clayton DA; Pan S Phys Chem Chem Phys; 2013 Dec; 15(48):20797-807. PubMed ID: 24196825 [TBL] [Abstract][Full Text] [Related]
19. Emerging Optical Microscopy Techniques for Electrochemistry. Lemineur JF; Wang H; Wang W; Kanoufi F Annu Rev Anal Chem (Palo Alto Calif); 2022 Jun; 15(1):57-82. PubMed ID: 35216529 [TBL] [Abstract][Full Text] [Related]
20. A 30 nm Nanopore Electrode: Facile Fabrication and Direct Insights into the Intrinsic Feature of Single Nanoparticle Collisions. Gao R; Ying YL; Li YJ; Hu YX; Yu RJ; Lin Y; Long YT Angew Chem Int Ed Engl; 2018 Jan; 57(4):1011-1015. PubMed ID: 29210155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]