These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31018190)

  • 1. Raman characterization of single-crystalline Ga
    Corrêa GB; Kumar S; Paschoal W; Devi C; Jacobsson D; Johannes A; Ronning C; Pettersson H; Paraguassu W
    Nanotechnology; 2019 Aug; 30(33):335202. PubMed ID: 31018190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of carrier density and mobility in Mn ion-implanted GaAs:Zn nanowires by Raman spectroscopy.
    Kumar S; Corrêa GB; Devi C; Jacobsson D; Johannes A; Ronning C; Paraguassu W; Paschoal W; Pettersson H
    Nanotechnology; 2020 May; 31(20):205705. PubMed ID: 31995520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and raman scattering from Zn(1-x)Mn(x)S diluted magnetic semiconductor nanowires.
    Wu J; Gutierrez HR; Eklund PC
    J Nanosci Nanotechnol; 2008 Jan; 8(1):393-9. PubMed ID: 18468089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondestructive Characterizations of Au-Catalyzed GaAs Nanowires on GaAs(111)B Substrates via Identifications of 1st Order Optical Phonon Modes Using
    Park JH; Kim RS; Park SJ; Park GC; Chung CH
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4358-4363. PubMed ID: 31968474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration.
    Steele JA; Lewis RA; Henini M; Lemine OM; Fan D; Mazur YI; Dorogan VG; Grant PC; Yu SQ; Salamo GJ
    Opt Express; 2014 May; 22(10):11680-9. PubMed ID: 24921290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced light scattering of the forbidden longitudinal optical phonon mode studied by micro-Raman spectroscopy on single InN nanowires.
    Schäfer-Nolte EO; Stoica T; Gotschke T; Limbach FA; Sutter E; Sutter P; Grützmacher D; Calarco R
    Nanotechnology; 2010 Aug; 21(31):315702. PubMed ID: 20634570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new route toward semiconductor nanospintronics: highly Mn-doped GaAs nanowires realized by ion-implantation under dynamic annealing conditions.
    Borschel C; Messing ME; Borgström MT; Paschoal W; Wallentin J; Kumar S; Mergenthaler K; Deppert K; Canali CM; Pettersson H; Samuelson L; Ronning C
    Nano Lett; 2011 Sep; 11(9):3935-40. PubMed ID: 21848314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition, Optical Resonances, and Doping of InP/InGaP Nanowires for Tandem Solar Cells: a Micro-Raman Analysis.
    Mediavilla I; Pura JL; Hinojosa VG; Galiana B; Hrachowina L; Borgström MT; Jimenez J
    ACS Nano; 2024 Apr; 18(14):10113-10123. PubMed ID: 38536891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Density and Diameter on Surface Optical Phonon Modes in GaAs Nanowire Bundles.
    Park JH; Kim RS; Park SJ; Chung CH
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4444-4449. PubMed ID: 31968493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface Engineering of Mn-Doped ZnSe-Based Core/Shell Nanowires for Tunable Host-Dopant Coupling.
    Li ZJ; Hofman E; Blaker A; Davis AH; Dzikovski B; Ma DK; Zheng W
    ACS Nano; 2017 Dec; 11(12):12591-12600. PubMed ID: 29172442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Raman spectral probe on polar w-ZnS nanostructures and surface optical phonon modes in nanowires.
    Prasad N; Karthikeyan B
    Nanoscale; 2019 Mar; 11(11):4948-4958. PubMed ID: 30838362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating far infrared spectra of Zn
    Talwar DN; Yang TR; Chou WC
    Sci Technol Adv Mater; 2016; 17(1):777-791. PubMed ID: 28228867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombination dynamics in aerotaxy-grown Zn-doped GaAs nanowires.
    Zhang W; Yang F; Messing ME; Mergenthaler K; Pistol ME; Deppert K; Samuelson L; Magnusson MH; Yartsev A
    Nanotechnology; 2016 Nov; 27(45):455704. PubMed ID: 27713183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopy and lattice dynamics calculations of tetragonally-structured single crystal zinc phosphide (Zn
    Stutz EZ; Escobar Steinvall S; Litvinchuk AP; Leran JB; Zamani M; Paul R; Fontcuberta I Morral A; Dimitrievska M
    Nanotechnology; 2021 Feb; 32(8):085704. PubMed ID: 33171447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clear Experimental Demonstration of Hole Gas Accumulation in Ge/Si Core-Shell Nanowires.
    Fukata N; Yu M; Jevasuwan W; Takei T; Bando Y; Wu W; Wang ZL
    ACS Nano; 2015 Dec; 9(12):12182-8. PubMed ID: 26554299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doping assessment in GaAs nanowires.
    Goktas NI; Fiordaliso EM; LaPierre RR
    Nanotechnology; 2018 Jun; 29(23):234001. PubMed ID: 29543595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passivation efficacy study of Al
    Parakh M; Ramaswamy P; Devkota S; Kuchoor H; Dawkins K; Iyer S
    Nanotechnology; 2022 May; 33(31):. PubMed ID: 35468592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire.
    Jadczak J; Plochocka P; Mitioglu A; Breslavetz I; Royo M; Bertoni A; Goldoni G; Smolenski T; Kossacki P; Kretinin A; Shtrikman H; Maude DK
    Nano Lett; 2014 May; 14(5):2807-14. PubMed ID: 24745828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon localization and resonance in thermal transport of pillar-based GaAs nanowires.
    Chen J; Hou Z; Chen H; Wang Z
    J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 35995045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, and magnetic properties.
    Li H; Huang Y; Zhang Q; Qiao Y; Gu Y; Liu J; Zhang Y
    Nanoscale; 2011 Feb; 3(2):654-60. PubMed ID: 21113544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.