BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 31018416)

  • 1. Microbial reductive transformation of iron-rich tailings in a column reactor and its environmental implications to arsenic reactive transport in mining tailings.
    Ouyang B; Lu X; Li J; Liu H
    Sci Total Environ; 2019 Jun; 670():1008-1018. PubMed ID: 31018416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of microbially mediated iron mineral transformation on temporal variation of arsenic in the Pleistocene aquifers of the central Yangtze River basin.
    Deng Y; Zheng T; Wang Y; Liu L; Jiang H; Ma T
    Sci Total Environ; 2018 Apr; 619-620():1247-1258. PubMed ID: 29734603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferric minerals and organic matter change arsenic speciation in copper mine tailings.
    Wang P; Liu Y; Menzies NW; Wehr JB; de Jonge MD; Howard DL; Kopittke PM; Huang L
    Environ Pollut; 2016 Nov; 218():835-843. PubMed ID: 27524252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-Based Interpretation of Groundwater Arsenic Mobility during in Situ Reductive Transformation of Ferrihydrite.
    Stolze L; Zhang D; Guo H; Rolle M
    Environ Sci Technol; 2019 Jun; 53(12):6845-6854. PubMed ID: 31117535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significance of microbial communities and interactions in safeguarding reactive mine tailings by ecological engineering.
    Nancucheo I; Johnson DB
    Appl Environ Microbiol; 2011 Dec; 77(23):8201-8. PubMed ID: 21965397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological attenuation of arsenic and iron in a continuous flow bioreactor treating acid mine drainage (AMD).
    Fernandez-Rojo L; Héry M; Le Pape P; Braungardt C; Desoeuvre A; Torres E; Tardy V; Resongles E; Laroche E; Delpoux S; Joulian C; Battaglia-Brunet F; Boisson J; Grapin G; Morin G; Casiot C
    Water Res; 2017 Oct; 123():594-606. PubMed ID: 28709104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea.
    Kim MJ; Ahn KH; Jung Y
    Chemosphere; 2002 Oct; 49(3):307-12. PubMed ID: 12363309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralogical characterization of arsenic in uranium mine tailings precipitated from iron-rich hydrometallurgical solutions.
    Moldovan BJ; Jiang DT; Hendry MJ
    Environ Sci Technol; 2003 Mar; 37(5):873-9. PubMed ID: 12666915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic bioremediation by biogenic iron oxides and sulfides.
    Omoregie EO; Couture RM; Van Cappellen P; Corkhill CL; Charnock JM; Polya DA; Vaughan D; Vanbroekhoven K; Lloyd JR
    Appl Environ Microbiol; 2013 Jul; 79(14):4325-35. PubMed ID: 23666325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition.
    Chen Z; Wang Y; Xia D; Jiang X; Fu D; Shen L; Wang H; Li QB
    J Hazard Mater; 2016 Jul; 311():20-9. PubMed ID: 26954472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of arsenic contaminated water in a laboratory scale up-flow bio-column reactor.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 May; 153(1-2):136-45. PubMed ID: 17890001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of microbial sulfidogenesis on the stability of As-Fe coprecipitate with low Fe/As molar ratio under anaerobic conditions.
    Wang S; He XY; Pan R; Xu L; Wang X; Jia Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7267-77. PubMed ID: 26676545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobilisation and bioavailability of arsenic around mesothermal gold deposits in a semiarid environment, Otago, New Zealand.
    Craw D; Pacheco L
    ScientificWorldJournal; 2002 Feb; 2():308-19. PubMed ID: 12806018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mineralogy and characterization of arsenic, iron, and lead in a mine waste-derived fertilizer.
    Williams AG; Scheckel KG; Tolaymat T; Impellitteri CA
    Environ Sci Technol; 2006 Aug; 40(16):4874-9. PubMed ID: 16955880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.
    Dold B; Diaby N; Spangenberg JE
    Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial influence on storage and mobilisation of metals in iron-rich mine tailings from the Salobo mine, Brazil.
    Henne A; Craw D; Gagen EJ; Southam G
    Sci Total Environ; 2019 Aug; 680():91-104. PubMed ID: 31100671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of biogeochemical redox oscillations on arsenic release from legacy mine tailings.
    Liu Y; Root RA; Abramson N; Fan L; Sun J; Liu C; Chorover J
    Geochim Cosmochim Acta; 2023 Nov; 360():192-206. PubMed ID: 37928745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation and selective recovery of metals from acidic mine waters using novel modular bioreactors.
    Hedrich S; Johnson DB
    Environ Sci Technol; 2014 Oct; 48(20):12206-12. PubMed ID: 25251612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage.
    Sağlam ES; Akçay M
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6584-607. PubMed ID: 26637995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of iron and manganese minerals and their associated microbiota in different mine sites to reveal the potential interactions of microbiota with mineral formation.
    Park JH; Kim BS; Chon CM
    Chemosphere; 2018 Jan; 191():245-252. PubMed ID: 29035796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.