BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31018416)

  • 21. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Speciation and characterization of arsenic in Ketza River mine tailings using X-ray absorption spectroscopy.
    Paktunc D; Foster A; Laflamme G
    Environ Sci Technol; 2003 May; 37(10):2067-74. PubMed ID: 12785509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arsenic species formed from arsenopyrite weathering along a contamination gradient in Circumneutral river floodplain soils.
    Mandaliev PN; Mikutta C; Barmettler K; Kotsev T; Kretzschmar R
    Environ Sci Technol; 2014; 48(1):208-17. PubMed ID: 24283255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovering iron and sulfate in the form of mineral from acid mine drainage by a bacteria-driven cyclic biomineralization system.
    Wang X; Jiang H; Zheng G; Liang J; Zhou L
    Chemosphere; 2021 Jan; 262():127567. PubMed ID: 32755692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions.
    Benaiges-Fernandez R; Palau J; Offeddu FG; Cama J; Urmeneta J; Soler JM; Dold B
    Mar Environ Res; 2019 Oct; 151():104782. PubMed ID: 31514974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens.
    Cutting RS; Coker VS; Telling ND; Kimber RL; van der Laan G; Pattrick RA; Vaughan DJ; Arenholz E; Lloyd JR
    Environ Sci Technol; 2012 Nov; 46(22):12591-9. PubMed ID: 23043215
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana.
    Sracek O; Kříbek B; Mihaljevič M; Ettler V; Vaněk A; Penížek V; Filip J; Veselovský F; Bagai ZB
    Environ Monit Assess; 2018 Jul; 190(8):482. PubMed ID: 30039179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature and nutrients as drivers of microbially mediated arsenic oxidation and removal from acid mine drainage.
    Tardy V; Casiot C; Fernandez-Rojo L; Resongles E; Desoeuvre A; Joulian C; Battaglia-Brunet F; Héry M
    Appl Microbiol Biotechnol; 2018 Mar; 102(5):2413-2424. PubMed ID: 29380031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Removal of As(III) and As(V) from water using a natural Fe and Mn enriched sample.
    Deschamps E; Ciminelli VS; Höll WH
    Water Res; 2005 Dec; 39(20):5212-20. PubMed ID: 16290184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confounding impacts of iron reduction on arsenic retention.
    Tufano KJ; Fendorf S
    Environ Sci Technol; 2008 Jul; 42(13):4777-83. PubMed ID: 18678005
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.
    Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A
    Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump.
    Filippi M; Drahota P; Machovič V; Böhmová V; Mihaljevič M
    Sci Total Environ; 2015 Dec; 536():713-728. PubMed ID: 26254072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.
    Kim CS; Stack DH; Rytuba JJ
    J Environ Monit; 2012 Jul; 14(7):1798-813. PubMed ID: 22718027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.
    Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reductive dissolution and sequestration of arsenic by microbial iron and thiosulfate reduction.
    Ko MS; Lee S; Kim KW
    Environ Geochem Health; 2019 Feb; 41(1):461-467. PubMed ID: 29520475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (NH).
    deLemos JL; Bostick BC; Renshaw CE; Stürup S; Feng X
    Environ Sci Technol; 2006 Jan; 40(1):67-73. PubMed ID: 16433334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine.
    Bao Y; Guo C; Lu G; Yi X; Wang H; Dang Z
    Sci Total Environ; 2018 Mar; 616-617():647-657. PubMed ID: 29103647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass.
    Liu Y; Huang L
    J Environ Manage; 2017 Jan; 186(Pt 2):175-182. PubMed ID: 27210238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.