BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31018537)

  • 1. Defining Cell Cluster Size by Dielectrophoretic Capture at an Array of Wireless Electrodes of Several Distinct Lengths.
    Banovetz JT; Li M; Pagariya D; Kim S; Ganapathysubramanian B; Anand RK
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31018537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis.
    Chen H; Osman SY; Moose DL; Vanneste M; Anderson JL; Henry MD; Anand RK
    Lab Chip; 2023 May; 23(11):2586-2600. PubMed ID: 37185977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array.
    Li M; Anand RK
    J Am Chem Soc; 2017 Jul; 139(26):8950-8959. PubMed ID: 28609630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative dielectrophoretic capture and repulsion of single cells at a bipolar electrode: the impact of faradaic ion enrichment and depletion.
    Anand RK; Johnson ES; Chiu DT
    J Am Chem Soc; 2015 Jan; 137(2):776-83. PubMed ID: 25562315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel Dielectrophoretic Capture, Isolation, and Electrical Lysis of Individual Breast Cancer Cells to Assess Variability in Enzymatic Activity.
    Banovetz JT; Manimaran S; Schelske BT; Anand RK
    Anal Chem; 2023 May; 95(20):7880-7887. PubMed ID: 37172139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electropolymerization of Pyrrole-Based Ionic Liquids on Selected Wireless Bipolar Electrodes.
    Chen H; Anderson JL; Anand RK
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18087-18096. PubMed ID: 35417143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label free and high-throughput discrimination of cells at a bipolar electrode array using the AC electrodynamics.
    Wu Y; Yue Y; Zhang H; Ma X; Li K; Zeng W; Wang S; Meng Y
    Anal Chim Acta; 2023 Oct; 1278():341701. PubMed ID: 37709447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of marker-free selection of single cells at a wireless electrode array with parallel fluidic isolation and electrical lysis.
    Li M; Anand RK
    Chem Sci; 2019 Feb; 10(5):1506-1513. PubMed ID: 30809368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results.
    Cummings EB; Singh AK
    Anal Chem; 2003 Sep; 75(18):4724-31. PubMed ID: 14674447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells.
    Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S; Park JK
    Lab Chip; 2005 Oct; 5(10):1161-7. PubMed ID: 16175274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of optimal electrode geometries for dielectrophoresis using fitness based on simplified particle trajectories.
    Kinio S; Mills JK
    Biomed Microdevices; 2016 Aug; 18(4):69. PubMed ID: 27432322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell.
    Gao J; Chen S; AlTal F; Hu S; Bouffier L; Wantz G
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32405-32410. PubMed ID: 28849645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AC dielectrophoretic manipulation and electroporation of vaccinia virus using carbon nanoelectrode arrays.
    Madiyar FR; Haller SL; Farooq O; Rothenburg S; Culbertson C; Li J
    Electrophoresis; 2017 Jun; 38(11):1515-1525. PubMed ID: 28211116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning.
    Puttaswamy SV; Sivashankar S; Chen RJ; Chin CK; Chang HY; Liu CH
    Biotechnol J; 2010 Oct; 5(10):1005-15. PubMed ID: 20931598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric and material determinants of patterning efficiency by dielectrophoresis.
    Albrecht DR; Sah RL; Bhatia SN
    Biophys J; 2004 Oct; 87(4):2131-47. PubMed ID: 15454417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional computational method for generating planar electrode patterns with enhanced volumetric electric fields and its application to continuous dielectrophoretic bacterial capture.
    Han CH; Ha HW; Jang J
    Lab Chip; 2019 May; 19(10):1772-1782. PubMed ID: 30973569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing sensitivity and specificity in rare cell capture microdevices with dielectrophoresis.
    Smith JP; Huang C; Kirby BJ
    Biomicrofluidics; 2015 Jan; 9(1):014116. PubMed ID: 25759749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.