These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 31018582)
1. In Vitro Co-culture Model of Primary Human Osteoblasts and Osteocytes in Collagen Gels. Skottke J; Gelinsky M; Bernhardt A Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018582 [TBL] [Abstract][Full Text] [Related]
2. Primary Human Osteocyte Networks in Pure and Modified Collagen Gels. Bernhardt A; Weiser E; Wolf S; Vater C; Gelinsky M Tissue Eng Part A; 2019 Oct; 25(19-20):1347-1355. PubMed ID: 30648477 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional Co-culture of Primary Human Osteocytes and Mature Human Osteoclasts in Collagen Gels. Bernhardt A; Österreich V; Gelinsky M Tissue Eng Part A; 2020 Jun; 26(11-12):647-655. PubMed ID: 31774039 [TBL] [Abstract][Full Text] [Related]
4. Triple Culture of Primary Human Osteoblasts, Osteoclasts and Osteocytes as an In Vitro Bone Model. Bernhardt A; Skottke J; von Witzleben M; Gelinsky M Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298935 [TBL] [Abstract][Full Text] [Related]
5. A new method to investigate how mechanical loading of osteocytes controls osteoblasts. Vazquez M; Evans BA; Riccardi D; Evans SL; Ralphs JR; Dillingham CM; Mason DJ Front Endocrinol (Lausanne); 2014; 5():208. PubMed ID: 25538684 [TBL] [Abstract][Full Text] [Related]
6. Phenotype and Viability of MLO-Y4 Cells Is Maintained by TGFβ₃ in a Serum-Dependent Manner within a 3D-Co-Culture with MG-63 Cells. Jähn K; Mason DJ; Ralphs JR; Evans BAJ; Archer CW; Richards RG; Stoddart MJ Int J Mol Sci; 2018 Jun; 19(7):. PubMed ID: 29966376 [TBL] [Abstract][Full Text] [Related]
7. SaOS2 Osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Prideaux M; Wijenayaka AR; Kumarasinghe DD; Ormsby RT; Evdokiou A; Findlay DM; Atkins GJ Calcif Tissue Int; 2014 Aug; 95(2):183-93. PubMed ID: 24916279 [TBL] [Abstract][Full Text] [Related]
8. Calcium induces pro-anabolic effects on human primary osteoblasts associated with acquisition of mature osteocyte markers. Welldon KJ; Findlay DM; Evdokiou A; Ormsby RT; Atkins GJ Mol Cell Endocrinol; 2013 Aug; 376(1-2):85-92. PubMed ID: 23791847 [TBL] [Abstract][Full Text] [Related]
9. Human primary osteocyte differentiation in a 3D culture system. Boukhechba F; Balaguer T; Michiels JF; Ackermann K; Quincey D; Bouler JM; Pyerin W; Carle GF; Rochet N J Bone Miner Res; 2009 Nov; 24(11):1927-35. PubMed ID: 19419324 [TBL] [Abstract][Full Text] [Related]
10. Impact of degradable magnesium implants on osteocytes in single and triple cultures. Bernhardt A; Helmholz H; Kilian D; Willumeit-Römer R; Gelinsky M Biomater Adv; 2022 Mar; 134():112692. PubMed ID: 35581081 [TBL] [Abstract][Full Text] [Related]
11. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. Atkins GJ; Rowe PS; Lim HP; Welldon KJ; Ormsby R; Wijenayaka AR; Zelenchuk L; Evdokiou A; Findlay DM J Bone Miner Res; 2011 Jul; 26(7):1425-36. PubMed ID: 21312267 [TBL] [Abstract][Full Text] [Related]
12. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Birmingham E; Niebur GL; McHugh PE; Shaw G; Barry FP; McNamara LM Eur Cell Mater; 2012 Jan; 23():13-27. PubMed ID: 22241610 [TBL] [Abstract][Full Text] [Related]
14. The induction of a catabolic phenotype in human primary osteoblasts and osteocytes by polyethylene particles. Atkins GJ; Welldon KJ; Holding CA; Haynes DR; Howie DW; Findlay DM Biomaterials; 2009 Aug; 30(22):3672-81. PubMed ID: 19349075 [TBL] [Abstract][Full Text] [Related]
15. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen--towards an in vitro model for bone remodeling. Bernhardt A; Thieme S; Domaschke H; Springer A; Rösen-Wolff A; Gelinsky M J Biomed Mater Res A; 2010 Dec; 95(3):848-56. PubMed ID: 20824694 [TBL] [Abstract][Full Text] [Related]
16. Osteoblast migration into type I collagen gel and differentiation to osteocyte-like cells within a self-produced mineralized matrix: a novel system for analyzing differentiation from osteoblast to osteocyte. Uchihashi K; Aoki S; Matsunobu A; Toda S Bone; 2013 Jan; 52(1):102-10. PubMed ID: 22985890 [TBL] [Abstract][Full Text] [Related]
17. Impact of Sr Wirsig K; Kilian D; von Witzleben M; Gelinsky M; Bernhardt A Eur J Cell Biol; 2022; 101(3):151256. PubMed ID: 35839696 [TBL] [Abstract][Full Text] [Related]
18. Establishment of optimized in vitro assay methods for evaluating osteocyte functions. Honma M; Ikebuchi Y; Kariya Y; Suzuki H J Bone Miner Metab; 2015 Jan; 33(1):73-84. PubMed ID: 24381056 [TBL] [Abstract][Full Text] [Related]
19. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Zhang K; Barragan-Adjemian C; Ye L; Kotha S; Dallas M; Lu Y; Zhao S; Harris M; Harris SE; Feng JQ; Bonewald LF Mol Cell Biol; 2006 Jun; 26(12):4539-52. PubMed ID: 16738320 [TBL] [Abstract][Full Text] [Related]
20. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure. Wang K; Le L; Chun BM; Tiede-Lewis LM; Shiflett LA; Prideaux M; Campos RS; Veno PA; Xie Y; Dusevich V; Bonewald LF; Dallas SL J Bone Miner Res; 2019 Jun; 34(6):979-995. PubMed ID: 30882939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]