These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31018637)

  • 21. Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches.
    Jasulaneca L; Livshits AI; Meija R; Kosmaca J; Sondors R; Ramma MM; Jevdokimovs D; Prikulis J; Erts D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel Test Fixture for Characterizing MEMS Switch Microcontact Reliability and Performance.
    Mahanta P; Anwar F; Coutu RA
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon nanotube wires and cables: near-term applications and future perspectives.
    Jarosz P; Schauerman C; Alvarenga J; Moses B; Mastrangelo T; Raffaelle R; Ridgley R; Landi B
    Nanoscale; 2011 Nov; 3(11):4542-53. PubMed ID: 21984338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of contact resistances in ceramic-coated vertically aligned carbon nanotube arrays.
    Li M; Yang N; Wood V; Park HG
    RSC Adv; 2019 Mar; 9(13):7266-7275. PubMed ID: 35548480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically Flexible and High-Performance CMOS Logic Circuits.
    Honda W; Arie T; Akita S; Takei K
    Sci Rep; 2015 Oct; 5():15099. PubMed ID: 26459882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.
    Mayet AM; Hussain AM; Hussain MM
    Nanotechnology; 2016 Jan; 27(3):035202. PubMed ID: 26636189
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors.
    Islam MR; Kormondy KJ; Silbar E; Khondaker SI
    Nanotechnology; 2012 Mar; 23(12):125201. PubMed ID: 22398179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.
    Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G
    ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.
    Seichepine F; Rothe J; Dudina A; Hierlemann A; Frey U
    Adv Mater; 2017 May; 29(17):. PubMed ID: 28295737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors.
    Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH
    ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Floating Bimetallic Catalysts for Growing 30 cm-Long Carbon Nanotube Arrays with High Yields and Uniformity.
    Jiang Q; Wu Y; Wang F; Zhu P; Li R; Zhao Y; Huang Y; Wu X; Zhao S; Li Y; Wang B; Gao D; Zhang R
    Adv Mater; 2024 Aug; 36(32):e2402257. PubMed ID: 38831681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A sub-1-volt nanoelectromechanical switching device.
    Lee JO; Song YH; Kim MW; Kang MH; Oh JS; Yang HH; Yoon JB
    Nat Nanotechnol; 2013 Jan; 8(1):36-40. PubMed ID: 23178336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-terminal nanoelectromechanical bistable switches based on molybdenum-sulfur-iodine molecular wire bundles.
    Andzane J; Prikulis J; Dvorsek D; Mihailovic D; Erts D
    Nanotechnology; 2010 Mar; 21(12):125706. PubMed ID: 20203354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implementation of Highly Reliable Contacts for RF MEMS Switches.
    Jiang L; Wang L; Huang X; Huang Z; Huang M
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmental life cycle assessment of a carbon nanotube-enabled semiconductor device.
    Dahlben LJ; Eckelman MJ; Hakimian A; Somu S; Isaacs JA
    Environ Sci Technol; 2013 Aug; 47(15):8471-8. PubMed ID: 23713494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A high aspect ratio surface micromachined accelerometer based on a SiC-CNT composite material.
    Mo J; Shankar S; Pezone R; Zhang G; Vollebregt S
    Microsyst Nanoeng; 2024; 10():42. PubMed ID: 38523654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monolithic-3D (M3D) Complementary Metal-Oxide-Semiconductor-Nanoelectromechanical (CMOS-NEM) Hybrid Reconfigurable Logic (RL) Circuits.
    Ko JW; Choi WY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4176-4181. PubMed ID: 31968437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of a three-terminal graphene nanoelectromechanical switch using two-dimensional materials.
    Huynh Van N; Muruganathan M; Kulothungan J; Mizuta H
    Nanoscale; 2018 Jul; 10(26):12349-12355. PubMed ID: 29687115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.