These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31019066)

  • 1. Predatory posture and performance in a precocious larval fish targeting evasive copepods.
    Fashingbauer MC; Tuttle LJ; Robinson HE; Strickler JR; Hartline DK; Lenz PH
    J Exp Biol; 2019 May; 222(Pt 9):. PubMed ID: 31019066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predator-prey interactions in the plankton: larval fish feeding on evasive copepods.
    Jackson JM; Lenz PH
    Sci Rep; 2016 Sep; 6():33585. PubMed ID: 27658849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction between suction feeding performance and prey escape response determines feeding success in larval fish.
    Sommerfeld N; Holzman R
    J Exp Biol; 2019 Sep; 222(Pt 17):. PubMed ID: 31395675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Going with the flow: hydrodynamic cues trigger directed escapes from a stalking predator.
    Tuttle LJ; Robinson HE; Takagi D; Strickler JR; Lenz PH; Hartline DK
    J R Soc Interface; 2019 Feb; 16(151):20180776. PubMed ID: 30958200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval fish counteract ram and suction to capture evasive prey.
    Chang I; Hartline DK; Lenz PH; Takagi D
    R Soc Open Sci; 2022 Nov; 9(11):220714. PubMed ID: 36340513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prey selection and functional morphology through ontogeny of Amphiprion clarkii with a congeneric comparison.
    Anto J; Majoris J; Turingan RG
    J Fish Biol; 2009 Aug; 75(3):575-90. PubMed ID: 20738558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology of seahorse head hydrodynamically aids in capture of evasive prey.
    Gemmell BJ; Sheng J; Buskey EJ
    Nat Commun; 2013; 4():2840. PubMed ID: 24281430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey.
    Gemmell BJ; Adhikari D; Longmire EK
    J R Soc Interface; 2014 Jan; 11(90):20130880. PubMed ID: 24227312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory-Motor Systems of Copepods involved in their Escape from Suction Feeding.
    Yen J; Murphy DW; Fan L; Webster DR
    Integr Comp Biol; 2015 Jul; 55(1):121-33. PubMed ID: 26015485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelled three-dimensional suction accuracy predicts prey capture success in three species of centrarchid fishes.
    Kane EA; Higham TE
    J R Soc Interface; 2014 Jun; 11(95):20140223. PubMed ID: 24718455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suction feeding across fish life stages: flow dynamics from larvae to adults and implications for prey capture.
    Yaniv S; Elad D; Holzman R
    J Exp Biol; 2014 Oct; 217(Pt 20):3748-57. PubMed ID: 25189373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prey-predator relationship between the cyclopoids Mesocyclops longisetus and Mesocyclops meridianus with Anopheles aquasalis larvae.
    Pernía J; de Zoppi RE; Palacios-Cáceres M
    J Am Mosq Control Assoc; 2007 Jun; 23(2):166-71. PubMed ID: 17847849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First description of the neuro-anatomy of a larval coral reef fish Amphiprion ocellaris.
    Jacob H; Metian M; Brooker RM; Duran E; Nakamura N; Roux N; Masanet P; Soulat O; Lecchini D
    J Fish Biol; 2016 Sep; 89(3):1583-91. PubMed ID: 27346539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation.
    Salze G; Craig SR; Smith BH; Smith EP; McLean E
    J Fish Biol; 2011 May; 78(5):1470-91. PubMed ID: 21539554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zooplankters' nightmare: The fast and efficient catching basket of larval phantom midges (Diptera: Chaoborus).
    Kruppert S; Deussen L; Weiss LC; Horstmann M; Wolff JO; Kleinteich T; Gorb SN; Tollrian R
    PLoS One; 2019; 14(3):e0214013. PubMed ID: 30901351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relating the ontogeny of functional morphology and prey selection with larval mortality in Amphiprion frenatus.
    Anto J; Turingan RG
    J Morphol; 2010 Jun; 271(6):682-96. PubMed ID: 20101727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-Population Similarities and Differences in Predation Efficiency of a Mosquito Natural Enemy.
    Cuthbert RN; Dalu T; Wasserman RJ; Weyl OLF; Froneman PW; Callaghan A; Dick JTA
    J Med Entomol; 2020 Nov; 57(6):1983-1987. PubMed ID: 32459349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton.
    Kiørboe T; Andersen A; Langlois VJ; Jakobsen HH; Bohr T
    Proc Natl Acad Sci U S A; 2009 Jul; 106(30):12394-9. PubMed ID: 19622725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Macrocyclops albidus (Copepoda: Cyclopidae): a new alternative for the control of mosquito larvae in Cuba].
    Suárez Delgado S; Rodríguez Rodríguez J; Menéndez Díaz Z; Montada Dorta D; García Avila I; Marquetti Fernández Mdel C
    Rev Cubana Med Trop; 2005; 57(3):207-11. PubMed ID: 17969275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in false percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: molecular and biochemical implications.
    Olivotto I; Di Stefano M; Rosetti S; Cossignani L; Pugnaloni A; Giantomassi F; Carnevali O
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Jul; 159(3):207-18. PubMed ID: 21320627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.