These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31019075)

  • 1. Formation and surface-stabilizing contributions to bare nanoemulsions created with negligible surface charge.
    Carpenter AP; Tran E; Altman RM; Richmond GL
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9214-9219. PubMed ID: 31019075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Low Can You Go? Molecular Details of Low-Charge Nanoemulsion Surfaces.
    Carpenter AP; Altman RM; Tran E; Richmond GL
    J Phys Chem B; 2020 May; 124(20):4234-4245. PubMed ID: 32378899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.
    Hensel JK; Carpenter AP; Ciszewski RK; Schabes BK; Kittredge CT; Moore FG; Richmond GL
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13351-13356. PubMed ID: 28760977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Salt-Induced Charge Screening on AOT Adsorption to the Planar and Nanoemulsion Oil-Water Interfaces.
    Carpenter AP; Foster MJ; Jones KK; Richmond GL
    Langmuir; 2021 Jul; 37(29):8658-8666. PubMed ID: 34260854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Steric and Molecular Bonding Effects Contributing to the Stability of Neutrally Charged Nanoemulsions.
    Tran E; Richmond GL
    Langmuir; 2021 Nov; 37(43):12643-12653. PubMed ID: 34662126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Duo: Vibrational Sum Frequency Scattering Investigation of pH-Switchable Carboxylic Acid/Carboxylate Surfactants on Nanodroplet Surfaces.
    Foster MJ; Carpenter AP; Richmond GL
    J Phys Chem B; 2021 Aug; 125(33):9629-9640. PubMed ID: 34402616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions.
    Tran E; Mapile AN; Richmond GL
    J Colloid Interface Sci; 2021 Oct; 599():706-716. PubMed ID: 33984763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Molecular Structure of Coadsorbed Polyethylenimine and Charged Surfactants at the Nanoemulsion Droplet Surface.
    Tran E; Carpenter AP; Richmond GL
    Langmuir; 2020 Aug; 36(31):9081-9089. PubMed ID: 32668900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water Structure at the Hydrophobic Nanodroplet Surface Revealed by Vibrational Sum Frequency Scattering Using Isotopic Dilution.
    Pullanchery S; Kulik S; Roke S
    J Phys Chem B; 2022 Apr; 126(16):3186-3192. PubMed ID: 35417164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions.
    Ziani K; Chang Y; McLandsborough L; McClements DJ
    J Agric Food Chem; 2011 Jun; 59(11):6247-55. PubMed ID: 21520914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corn Oil-Water Separation: Interactions of Proteins and Surfactants at Corn Oil/Water Interfaces.
    Zhang C; Gao J; Hankett J; Varanasi P; Borst J; Shirazi Y; Zhao S; Chen Z
    Langmuir; 2020 Apr; 36(15):4044-4054. PubMed ID: 32212710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Destructing surfactant network in nanoemulsions by positively charged magnetic nanorods to enhance oil-water separation.
    Xiong Y; Huang X; Li L; Liu W; Zhang J; He M; Liu J; Lu L; Peng K
    J Environ Sci (China); 2022 Aug; 118():112-121. PubMed ID: 35305759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoemulsions Stable against Ostwald Ripening.
    Guo Y; Zhang X; Wang X; Zhang L; Xu Z; Sun D
    Langmuir; 2024 Jan; 40(2):1364-1372. PubMed ID: 38175958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twist and Stretch: Assignment and Surface Charge Sensitivity of a Water Combination Band and Its Implications for Vibrational Sum Frequency Spectra Interpretations.
    Altman RM; Richmond GL
    J Phys Chem B; 2021 Jun; 125(24):6717-6726. PubMed ID: 34114821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor.
    Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M
    Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement.
    Rao J; McClements DJ
    J Agric Food Chem; 2010 Jun; 58(11):7059-66. PubMed ID: 20476765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and Physical Stability of
    Zeng L; Liu Y; Yuan Z; Wang Z
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil-in-Water Emulsions Probed Using Fluorescence Multivariate-Curve-Resolution Spectroscopy.
    Gündoğdu G; Yılmaz Topuzlu E; Mutlu F; Ertekin UE; Okur HI
    Langmuir; 2024 Jun; 40(25):13116-13121. PubMed ID: 38861700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.