These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31019087)

  • 1. Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines.
    Park I; Kim HJ; Kim Y; Hwang HS; Kasai H; Kim JH; Park JW
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9616-9621. PubMed ID: 31019087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM Imaging Reveals MicroRNA-132 to be a Positive Regulator of Synaptic Functions.
    Park I; Kim HJ; Shin J; Jung YJ; Lee D; Lim JS; Park JM; Park JW; Kim JH
    Adv Sci (Weinh); 2024 May; 11(17):e2306630. PubMed ID: 38493494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A brain-specific microRNA regulates dendritic spine development.
    Schratt GM; Tuebing F; Nigh EA; Kane CG; Sabatini ME; Kiebler M; Greenberg ME
    Nature; 2006 Jan; 439(7074):283-9. PubMed ID: 16421561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct current stimulation-induced synaptic plasticity in the sensorimotor cortex: structure follows function.
    Gellner AK; Reis J; Holtick C; Schubert C; Fritsch B
    Brain Stimul; 2020; 13(1):80-88. PubMed ID: 31405790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-132 enhances dendritic morphogenesis, spine density, synaptic integration, and survival of newborn olfactory bulb neurons.
    Pathania M; Torres-Reveron J; Yan L; Kimura T; Lin TV; Gordon V; Teng ZQ; Zhao X; Fulga TA; Van Vactor D; Bordey A
    PLoS One; 2012; 7(5):e38174. PubMed ID: 22693596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural modulation of dendritic spines during synaptic plasticity.
    Fortin DA; Srivastava T; Soderling TR
    Neuroscientist; 2012 Aug; 18(4):326-41. PubMed ID: 21670426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of NF-κB to Dendritic Spines Is Required for Synaptic Signaling and Spine Development.
    Dresselhaus EC; Boersma MCH; Meffert MK
    J Neurosci; 2018 Apr; 38(17):4093-4103. PubMed ID: 29555853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline.
    Kao YC; Wang IF; Tsai KJ
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30096777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BDNF signaling during the lifetime of dendritic spines.
    Zagrebelsky M; Tacke C; Korte M
    Cell Tissue Res; 2020 Oct; 382(1):185-199. PubMed ID: 32537724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA regulation of homeostatic synaptic plasticity.
    Cohen JE; Lee PR; Chen S; Li W; Fields RD
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11650-5. PubMed ID: 21697510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of drebrin in dendritic spines.
    Koganezawa N; Hanamura K; Sekino Y; Shirao T
    Mol Cell Neurosci; 2017 Oct; 84():85-92. PubMed ID: 28161364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo.
    Pfeiffer T; Poll S; Bancelin S; Angibaud J; Inavalli VK; Keppler K; Mittag M; Fuhrmann M; Nägerl UV
    Elife; 2018 Jun; 7():. PubMed ID: 29932052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disruption of Coordinated Presynaptic and Postsynaptic Maturation Underlies the Defects in Hippocampal Synapse Stability and Plasticity in Abl2/Arg-Deficient Mice.
    Xiao X; Levy AD; Rosenberg BJ; Higley MJ; Koleske AJ
    J Neurosci; 2016 Jun; 36(25):6778-91. PubMed ID: 27335408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-Dependent Regulation of Dendritic Spine Density and Protein Expression in Mir324 KO Mice.
    Parkins EV; Burwinkel JM; Ranatunga R; Yaser S; Hu YC; Tiwari D; Gross C
    J Mol Neurosci; 2023 Oct; 73(9-10):818-830. PubMed ID: 37773316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of Polyribosomes in Dendritic Spine Heads, But Not Bases and Necks, during Memory Consolidation Depends on Cap-Dependent Translation Initiation.
    Ostroff LE; Botsford B; Gindina S; Cowansage KK; LeDoux JE; Klann E; Hoeffer C
    J Neurosci; 2017 Feb; 37(7):1862-1872. PubMed ID: 28087764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo.
    McDole B; Isgor C; Pare C; Guthrie K
    Neuroscience; 2015 Sep; 304():146-60. PubMed ID: 26211445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD44: a novel synaptic cell adhesion molecule regulating structural and functional plasticity of dendritic spines.
    Roszkowska M; Skupien A; Wójtowicz T; Konopka A; Gorlewicz A; Kisiel M; Bekisz M; Ruszczycki B; Dolezyczek H; Rejmak E; Knapska E; Mozrzymas JW; Wlodarczyk J; Wilczynski GM; Dzwonek J
    Mol Biol Cell; 2016 Dec; 27(25):4055-4066. PubMed ID: 27798233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Drebrin in Synaptic Plasticity.
    Sekino Y; Koganezawa N; Mizui T; Shirao T
    Adv Exp Med Biol; 2017; 1006():183-201. PubMed ID: 28865021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testosterone has sublayer-specific effects on dendritic spine maturation mediated by BDNF and PSD-95 in pyramidal neurons in the hippocampus CA1 area.
    Li M; Masugi-Tokita M; Takanami K; Yamada S; Kawata M
    Brain Res; 2012 Nov; 1484():76-84. PubMed ID: 23010313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology.
    Lee SE; Kim Y; Han JK; Park H; Lee U; Na M; Jeong S; Chung C; Cestra G; Chang S
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6749-54. PubMed ID: 27226294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.