These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 31019521)
1. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat. Singh D; Wang X; Kumar U; Gao L; Noor M; Imtiaz M; Singh RP; Poland J Front Plant Sci; 2019; 10():394. PubMed ID: 31019521 [TBL] [Abstract][Full Text] [Related]
2. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J Plant Methods; 2016; 12():35. PubMed ID: 27347001 [TBL] [Abstract][Full Text] [Related]
3. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Hassan MA; Yang M; Fu L; Rasheed A; Zheng B; Xia X; Xiao Y; He Z Plant Methods; 2019; 15():37. PubMed ID: 31011362 [TBL] [Abstract][Full Text] [Related]
4. High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation. Volpato L; Pinto F; González-Pérez L; Thompson IG; Borém A; Reynolds M; Gérard B; Molero G; Rodrigues FA Front Plant Sci; 2021; 12():591587. PubMed ID: 33664755 [TBL] [Abstract][Full Text] [Related]
5. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images. Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the potential of phenomic and genomic prediction in winter wheat breeding using high-throughput phenotyping and deep learning. Kaushal S; Gill HS; Billah MM; Khan SN; Halder J; Bernardo A; Amand PS; Bai G; Glover K; Maimaitijiang M; Sehgal SK Front Plant Sci; 2024; 15():1410249. PubMed ID: 38872880 [TBL] [Abstract][Full Text] [Related]
7. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. Rutkoski J; Poland J; Mondal S; Autrique E; Pérez LG; Crossa J; Reynolds M; Singh R G3 (Bethesda); 2016 Sep; 6(9):2799-808. PubMed ID: 27402362 [TBL] [Abstract][Full Text] [Related]
8. Deciphering genetic basis of developmental and agronomic traits by integrating high-throughput optical phenotyping and genome-wide association studies in wheat. Gao J; Hu X; Gao C; Chen G; Feng H; Jia Z; Zhao P; Yu H; Li H; Geng Z; Fu J; Zhang J; Cheng Y; Yang B; Pang Z; Xiang D; Jia J; Su H; Mao H; Lan C; Chen W; Yan W; Gao L; Yang W; Li Q Plant Biotechnol J; 2023 Oct; 21(10):1966-1977. PubMed ID: 37392004 [TBL] [Abstract][Full Text] [Related]
9. High-Throughput Field Imaging and Basic Image Analysis in a Wheat Breeding Programme. Walter J; Edwards J; Cai J; McDonald G; Miklavcic SJ; Kuchel H Front Plant Sci; 2019; 10():449. PubMed ID: 31105715 [TBL] [Abstract][Full Text] [Related]
11. GWAS for plant growth stages and yield components in spring wheat (Triticum aestivum L.) harvested in three regions of Kazakhstan. Turuspekov Y; Baibulatova A; Yermekbayev K; Tokhetova L; Chudinov V; Sereda G; Ganal M; Griffiths S; Abugalieva S BMC Plant Biol; 2017 Nov; 17(Suppl 1):190. PubMed ID: 29143598 [TBL] [Abstract][Full Text] [Related]
12. Localization of the quantitative trait loci related to lodging resistance in spring bread wheat (Triticum aestivum L.). Leonova IN; Ageeva EV Vavilovskii Zhurnal Genet Selektsii; 2022 Nov; 26(7):675-683. PubMed ID: 36532625 [TBL] [Abstract][Full Text] [Related]
14. Genomic Prediction and Indirect Selection for Grain Yield in US Pacific Northwest Winter Wheat Using Spectral Reflectance Indices from High-Throughput Phenotyping. Lozada DN; Godoy JV; Ward BP; Carter AH Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31881728 [TBL] [Abstract][Full Text] [Related]
15. Applied phenomics and genomics for improving barley yellow dwarf resistance in winter wheat. Silva P; Evers B; Kieffaber A; Wang X; Brown R; Gao L; Fritz A; Crain J; Poland J G3 (Bethesda); 2022 Jul; 12(7):. PubMed ID: 35353191 [TBL] [Abstract][Full Text] [Related]
16. High-throughput phenotyping with deep learning gives insight into the genetic architecture of flowering time in wheat. Wang X; Xuan H; Evers B; Shrestha S; Pless R; Poland J Gigascience; 2019 Nov; 8(11):. PubMed ID: 31742599 [TBL] [Abstract][Full Text] [Related]
17. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat. Krause MR; González-Pérez L; Crossa J; Pérez-Rodríguez P; Montesinos-López O; Singh RP; Dreisigacker S; Poland J; Rutkoski J; Sorrells M; Gore MA; Mondal S G3 (Bethesda); 2019 Apr; 9(4):1231-1247. PubMed ID: 30796086 [TBL] [Abstract][Full Text] [Related]
18. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Wang W; Guo W; Le L; Yu J; Wu Y; Li D; Wang Y; Wang H; Lu X; Qiao H; Gu X; Tian J; Zhang C; Pu L Mol Plant; 2023 Feb; 16(2):354-373. PubMed ID: 36447436 [TBL] [Abstract][Full Text] [Related]
19. Automatic grading evaluation of winter wheat lodging based on deep learning. Zang H; Su X; Wang Y; Li G; Zhang J; Zheng G; Hu W; Shen H Front Plant Sci; 2024; 15():1284861. PubMed ID: 38726297 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Association and Regional Heritability Mapping of Plant Architecture, Lodging and Productivity in Resende RT; de Resende MDV; Azevedo CF; Fonseca E Silva F; Melo LC; Pereira HS; Souza TLPO; Valdisser PAMR; Brondani C; Vianello RP G3 (Bethesda); 2018 Jul; 8(8):2841-2854. PubMed ID: 29967054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]