These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31019674)

  • 1. Evidence of a largely staminal origin for the
    Kostyun JL; Robertson JE; Preston JC
    Evodevo; 2019; 10():9. PubMed ID: 31019674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of Corona Is Independent of the Four Whorls of Floral Organs in
    Ma Y; Hu X; Fan K; Zhang N; Shang L; Deng Y; Hu T; Zhang W; Wang Y; Jiang Z
    Plants (Basel); 2023 Mar; 12(7):. PubMed ID: 37050084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pitfall Flower Development and Organ Identity of
    Heiduk A; Pramanik D; Spaans M; Gast L; Dorst N; van Heuven BJ; Gravendeel B
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33327479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The corona of the daffodil Narcissus bulbocodium shares stamen-like identity and is distinct from the orthodox floral whorls.
    Waters MT; Tiley AM; Kramer EM; Meerow AW; Langdale JA; Scotland RW
    Plant J; 2013 May; 74(4):615-25. PubMed ID: 23406544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking the development of the petaloid fertile stamen in Canna indica: insights into the origin of androecial petaloidy in the Zingiberales.
    Almeida AM; Brown A; Specht CD
    AoB Plants; 2013; 5():plt009. PubMed ID: 23539493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterochronic developmental shifts underlie floral diversity within
    Kostyun JL; Preston JC; Moyle LC
    Evodevo; 2017; 8():17. PubMed ID: 29075434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Floral Morphology and Relationships of Clusia gundlachii with a Discussion of Floral Organ Identity and Diversity in the Genus Clusia.
    Gustafsson MH
    Int J Plant Sci; 2000 Jan; 161(1):43-53. PubMed ID: 10648193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wrinkled petals and stamens 1, is required for the morphogenesis of petals and stamens in Lotus japonicus.
    Chen JH; Pang JL; Wang LL; Luo YH; Li X; Cao XL; Lin K; Ma W; Hu XH; Luo D
    Cell Res; 2006 May; 16(5):499-506. PubMed ID: 16699545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floral development of petaloid Alismatales as an insight into the origin of the trimerous Bauplan in monocot flowers.
    Iwamoto A; Nakamura A; Kurihara S; Otani A; Ronse De Craene LP
    J Plant Res; 2018 May; 131(3):395-407. PubMed ID: 29549525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the nature of petals in Caryophyllaceae? Developmental evidence clarifies their evolutionary origin.
    Wei L; Craene LR
    Ann Bot; 2019 Sep; 124(2):281-295. PubMed ID: 31175350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility.
    Huang F; Xu G; Chi Y; Liu H; Xue Q; Zhao T; Gai J; Yu D
    BMC Plant Biol; 2014 Apr; 14():89. PubMed ID: 24693922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of symmetry genes and the evolution of floral morphologies.
    Hileman LC; Kramer EM; Baum DA
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12814-9. PubMed ID: 14555758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative floral ontogeny in Detarieae (Leguminosae: Caesalpinioideae). 2. Zygomorphic taxa with petal and stamen suppression.
    Tucker SC
    Am J Bot; 2002 Jun; 89(6):888-907. PubMed ID: 21665689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system.
    Dirks-Mulder A; Butôt R; van Schaik P; Wijnands JW; van den Berg R; Krol L; Doebar S; van Kooperen K; de Boer H; Kramer EM; Smets EF; Vos RA; Vrijdaghs A; Gravendeel B
    BMC Evol Biol; 2017 Mar; 17(1):89. PubMed ID: 28335712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of floral MADS-box genes in Sinofranchetia chinensis (Lardizabalaceae): implications for the nature of the nectar leaves.
    Hu J; Zhang J; Shan H; Chen Z
    Ann Bot; 2012 Jul; 110(1):57-69. PubMed ID: 22652421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. B- and C-class gene expression during corona development of the blue passionflower (Passiflora caerulea, Passifloraceae).
    Hemingway CA; Christensen AR; Malcomber ST
    Am J Bot; 2011 Jun; 98(6):923-34. PubMed ID: 21613065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irregular adaxial-abaxial polarity rearrangement contributes to the monosymmetric-to-asymmetric transformation of
    Tian X; Li X; Yu Q; Zhao H; Song J; Liao J
    AoB Plants; 2020 Oct; 12(5):plaa051. PubMed ID: 33133481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and structure of four different stamens in Clematis macropetala (Ranunculaceae): particular emphasis on staminodes and staminal nectary.
    Li WJ; Huang ZX; Han M; Ren Y; Zhang XH
    Protoplasma; 2022 May; 259(3):627-640. PubMed ID: 34247271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petaloidy and petal identity MADS-box genes in the balsaminoid genera Impatiens and Marcgravia.
    Geuten K; Becker A; Kaufmann K; Caris P; Janssens S; Viaene T; Theissen G; Smets E
    Plant J; 2006 Aug; 47(4):501-18. PubMed ID: 16856983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Floral Development of Rhamnaceae and Origin of Its Unique Floral Features.
    Basso-Alves JP; Ribeiro CC; Teixeira SP
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36678960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.