BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31020292)

  • 1. High throughput gene expression profiling of yeast colonies with microgel-culture Drop-seq.
    Liu L; Dalal CK; Heineike BM; Abate AR
    Lab Chip; 2019 May; 19(10):1838-1849. PubMed ID: 31020292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultra high-throughput, massively multiplexable, single-cell RNA-seq platform in yeasts.
    Brettner L; Eder R; Schmidlin K; Geiler-Samerotte K
    Yeast; 2024 Apr; 41(4):242-255. PubMed ID: 38282330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Throughput Yeast Strain Phenotyping with Droplet-Based RNA Sequencing.
    Zhang JQ; Chang KC; Liu L; Gartner ZJ; Abate AR
    J Vis Exp; 2020 May; (159):. PubMed ID: 32510483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mDrop-Seq: Massively Parallel Single-Cell RNA-Seq of
    Dohn R; Xie B; Back R; Selewa A; Eckart H; Rao RP; Basu A
    Vaccines (Basel); 2021 Dec; 10(1):. PubMed ID: 35062691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional Profiling of
    Rong-Mullins X; Ayers MC; Summers M; Gallagher JEG
    G3 (Bethesda); 2018 Feb; 8(2):607-619. PubMed ID: 29208650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling.
    Maršíková J; Wilkinson D; Hlaváček O; Gilfillan GD; Mizeranschi A; Hughes T; Begany M; Rešetárová S; Váchová L; Palková Z
    BMC Genomics; 2017 Oct; 18(1):814. PubMed ID: 29061122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Profiling of DNA Accessibility and Gene Expression Dynamics with ATAC-Seq and RNA-Seq.
    Hendrickson DG; Soifer I; Wranik BJ; Botstein D; Scott McIsaac R
    Methods Mol Biol; 2018; 1819():317-333. PubMed ID: 30421411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions.
    Shekhawat K; Patterton H; Bauer FF; Setati ME
    BMC Genomics; 2019 Feb; 20(1):145. PubMed ID: 30777005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiated gene expression in cells within yeast colonies.
    Mináriková L; Kuthan M; Ricicová M; Forstová J; Palková Z
    Exp Cell Res; 2001 Dec; 271(2):296-304. PubMed ID: 11716542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.
    Ro DK; Ouellet M; Paradise EM; Burd H; Eng D; Paddon CJ; Newman JD; Keasling JD
    BMC Biotechnol; 2008 Nov; 8():83. PubMed ID: 18983675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses.
    Cubillos FA; Brice C; Molinet J; Tisné S; Abarca V; Tapia SM; Oporto C; García V; Liti G; Martínez C
    G3 (Bethesda); 2017 Jun; 7(6):1693-1705. PubMed ID: 28592651
    [No Abstract]   [Full Text] [Related]  

  • 14. An optimized FAIRE procedure for low cell numbers in yeast.
    Segorbe D; Wilkinson D; Mizeranschi A; Hughes T; Aaløkken R; Váchová L; Palková Z; Gilfillan GD
    Yeast; 2018 Aug; 35(8):507-512. PubMed ID: 29577419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins.
    Abe H; Takaoka Y; Chiba Y; Sato N; Ohgiya S; Itadani A; Hirashima M; Shimoda C; Jigami Y; Nakayama K
    Glycobiology; 2009 Apr; 19(4):428-36. PubMed ID: 19129247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Microfluidics for the Screening of Yeast Libraries.
    Huang M; Joensson HN; Nielsen J
    Methods Mol Biol; 2018; 1671():307-317. PubMed ID: 29170967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.
    Hesketh A; Vergnano M; Wan C; Oliver SG
    mBio; 2017 Jul; 8(4):. PubMed ID: 28743817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 19. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.
    Feng Q; Liu ZL; Weber SA; Li S
    PLoS One; 2018; 13(4):e0195633. PubMed ID: 29621349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.