BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31020292)

  • 21. Transcriptome Remodeling of Differentiated Cells during Chronological Ageing of Yeast Colonies: New Insights into Metabolic Differentiation.
    Wilkinson D; Maršíková J; Hlaváček O; Gilfillan GD; Ježková E; Aaløkken R; Váchová L; Palková Z
    Oxid Med Cell Longev; 2018; 2018():4932905. PubMed ID: 29576850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Ho PW; Klein M; Futschik M; Nevoigt E
    FEMS Yeast Res; 2018 May; 18(3):. PubMed ID: 29481685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools.
    Siddiqui MS; Thodey K; Trenchard I; Smolke CD
    FEMS Yeast Res; 2012 Mar; 12(2):144-70. PubMed ID: 22136110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study on the survival of wild-type, laboratory and recombinant strains of the baker yeast Saccharomyces cerevisiae under sterile and nonsterile conditions.
    Bröker M
    Zentralbl Hyg Umweltmed; 1990 Dec; 190(5-6):547-57. PubMed ID: 2080973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol.
    Ho NW; Chen Z; Brainard AP; Sedlak M
    Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis.
    Legendre R; Baudin-Baillieu A; Hatin I; Namy O
    Bioinformatics; 2015 Aug; 31(15):2586-8. PubMed ID: 25812744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology.
    Kuthan M; Devaux F; Janderová B; Slaninová I; Jacq C; Palková Z
    Mol Microbiol; 2003 Feb; 47(3):745-54. PubMed ID: 12535073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PAT-seq: a method to study the integration of 3'-UTR dynamics with gene expression in the eukaryotic transcriptome.
    Harrison PF; Powell DR; Clancy JL; Preiss T; Boag PR; Traven A; Seemann T; Beilharz TH
    RNA; 2015 Aug; 21(8):1502-10. PubMed ID: 26092945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes.
    Cai Y; Agmon N; Choi WJ; Ubide A; Stracquadanio G; Caravelli K; Hao H; Bader JS; Boeke JD
    Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1803-8. PubMed ID: 25624482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seq-Well: A Sample-Efficient, Portable Picowell Platform for Massively Parallel Single-Cell RNA Sequencing.
    Aicher TP; Carroll S; Raddi G; Gierahn T; Wadsworth MH; Hughes TK; Love C; Shalek AK
    Methods Mol Biol; 2019; 1979():111-132. PubMed ID: 31028635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast.
    Ambri F; Snoek T; Skjoedt ML; Jensen MK; Keasling JD
    Methods Mol Biol; 2018; 1671():269-290. PubMed ID: 29170965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations.
    Wei X; Das J; Fragoza R; Liang J; Bastos de Oliveira FM; Lee HR; Wang X; Mort M; Stenson PD; Cooper DN; Lipkin SM; Smolka MB; Yu H
    PLoS Genet; 2014 Dec; 10(12):e1004819. PubMed ID: 25502805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Resolution Profiling of NMD Targets in Yeast.
    He F; Celik A; Baker R; Jacobson A
    Methods Enzymol; 2018; 612():147-181. PubMed ID: 30502940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterologous expression of dammarenediol synthase gene in an engineered Saccharomyces cerevisiae.
    Liang YL; Zhao SJ; Xu LX; Zhang XY
    Lett Appl Microbiol; 2012 Nov; 55(5):323-9. PubMed ID: 22897704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance.
    Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W
    Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical-genetic approaches for exploring the mode of action of natural products.
    Lopez A; Parsons AB; Nislow C; Giaever G; Boone C
    Prog Drug Res; 2008; 66():237, 239-71. PubMed ID: 18416308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae.
    Jakočiūnas T; Bonde I; Herrgård M; Harrison SJ; Kristensen M; Pedersen LE; Jensen MK; Keasling JD
    Metab Eng; 2015 Mar; 28():213-222. PubMed ID: 25638686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.
    Crook NC; Schmitz AC; Alper HS
    ACS Synth Biol; 2014 May; 3(5):307-13. PubMed ID: 24328131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.