These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31020292)

  • 41. An Expanded Heterologous GAL Promoter Collection for Diauxie-Inducible Expression in Saccharomyces cerevisiae.
    Peng B; Wood RJ; Nielsen LK; Vickers CE
    ACS Synth Biol; 2018 Feb; 7(2):748-751. PubMed ID: 29301066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Throughput Yeast Strain Sequencing.
    Schwartz K; Sherlock G
    Cold Spring Harb Protoc; 2016 Oct; 2016(10):. PubMed ID: 27698244
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Opportunities for yeast metabolic engineering: Lessons from synthetic biology.
    Krivoruchko A; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):262-76. PubMed ID: 21328545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae.
    Nielsen J; Jewett MC
    FEMS Yeast Res; 2008 Feb; 8(1):122-31. PubMed ID: 17727659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide C-SWAT library for high-throughput yeast genome tagging.
    Meurer M; Duan Y; Sass E; Kats I; Herbst K; Buchmuller BC; Dederer V; Huber F; Kirrmaier D; Štefl M; Van Laer K; Dick TP; Lemberg MK; Khmelinskii A; Levy ED; Knop M
    Nat Methods; 2018 Aug; 15(8):598-600. PubMed ID: 29988096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of a Yeast Two-Hybrid Library by High-Throughput Sequencing.
    Yu Q; Hu Y; Su J; Li P; Zhang L; Fu X; Chen F; Song A
    J Proteome Res; 2020 Aug; 19(8):3567-3572. PubMed ID: 32442380
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient bioreduction of bicyclo[2.2.2]octane-2,5-dione and bicyclo[2.2.2]oct-7-ene-2,5-dione by genetically engineered Saccharomyces cerevisiae.
    Friberg A; Johanson T; Franzén J; Gorwa-Grauslund MF; Frejd T
    Org Biomol Chem; 2006 Jun; 4(11):2304-12. PubMed ID: 16729141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Yeast homologous recombination-based promoter engineering for the activation of silent natural product biosynthetic gene clusters.
    Montiel D; Kang HS; Chang FY; Charlop-Powers Z; Brady SF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):8953-8. PubMed ID: 26150486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Parallel competition analysis of Saccharomyces cerevisiae strains differing by a single base using polymerase colonies.
    Merritt J; DiTonno JR; Mitra RD; Church GM; Edwards JS
    Nucleic Acids Res; 2003 Aug; 31(15):e84. PubMed ID: 12888536
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-throughput characterization of protein-protein interactions by reprogramming yeast mating.
    Younger D; Berger S; Baker D; Klavins E
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12166-12171. PubMed ID: 29087945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-Cell RNA Sequencing with Drop-Seq.
    Bageritz J; Raddi G
    Methods Mol Biol; 2019; 1979():73-85. PubMed ID: 31028633
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development of intra-strain self-cloning procedure for breeding baker's yeast strains.
    Nakagawa Y; Ogihara H; Mochizuki C; Yamamura H; Iimura Y; Hayakawa M
    J Biosci Bioeng; 2017 Mar; 123(3):319-326. PubMed ID: 27829542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of Chemical-Genetic Interactions via Parallel Analysis of Barcoded Yeast Strains.
    Suresh S; Schlecht U; Xu W; Miranda M; Davis RW; Nislow C; Giaever G; St Onge RP
    Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587778
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosynthesis of the antibiotic nonribosomal peptide penicillin in baker's yeast.
    Awan AR; Blount BA; Bell DJ; Shaw WM; Ho JCH; McKiernan RM; Ellis T
    Nat Commun; 2017 May; 8():15202. PubMed ID: 28469278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.
    Liu G; Lanham C; Buchan JR; Kaplan ME
    PLoS One; 2017; 12(3):e0174128. PubMed ID: 28319150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ssn6 Defines a New Level of Regulation of White-Opaque Switching in Candida albicans and Is Required For the Stochasticity of the Switch.
    Hernday AD; Lohse MB; Nobile CJ; Noiman L; Laksana CN; Johnson AD
    mBio; 2016 Jan; 7(1):e01565-15. PubMed ID: 26814177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering microbial phenotypes through rewiring of genetic networks.
    Windram OPF; Rodrigues RTL; Lee S; Haines M; Bayer TS
    Nucleic Acids Res; 2017 May; 45(8):4984-4993. PubMed ID: 28369627
    [TBL] [Abstract][Full Text] [Related]  

  • 58. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance.
    de Witt RN; Kroukamp H; Van Zyl WH; Paulsen IT; Volschenk H
    FEMS Yeast Res; 2019 Aug; 19(5):. PubMed ID: 31276593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.