BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31020328)

  • 1. A Novel Open Access Web Portal for Integrating Mechanistic and Toxicogenomic Study Results.
    Sutherland JJ; Stevens JL; Johnson K; Elango N; Webster YW; Mills BJ; Robertson DH
    Toxicol Sci; 2019 Aug; 170(2):296-309. PubMed ID: 31020328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LTMap: a web server for assessing the potential liver toxicity by genome-wide transcriptional expression data.
    Xing L; Wu L; Liu Y; Ai N; Lu X; Fan X
    J Appl Toxicol; 2014 Jul; 34(7):805-9. PubMed ID: 24022982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicogenomics Approaches to Address Toxicity and Carcinogenicity in the Liver.
    Pandiri AR; Auerbach SS; Stevens JL; Blomme EAG
    Toxicol Pathol; 2023 Oct; 51(7-8):470-481. PubMed ID: 38288963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicogenomic module associations with pathogenesis: a network-based approach to understanding drug toxicity.
    Sutherland JJ; Webster YW; Willy JA; Searfoss GH; Goldstein KM; Irizarry AR; Hall DG; Stevens JL
    Pharmacogenomics J; 2018 May; 18(3):377-390. PubMed ID: 28440344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open TG-GATEs: a large-scale toxicogenomics database.
    Igarashi Y; Nakatsu N; Yamashita T; Ono A; Ohno Y; Urushidani T; Yamada H
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D921-7. PubMed ID: 25313160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scoring multiple toxicological endpoints using a toxicogenomic database.
    Kiyosawa N; Ando Y; Watanabe K; Niino N; Manabe S; Yamoto T
    Toxicol Lett; 2009 Jul; 188(2):91-7. PubMed ID: 19446240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Practical application of toxicogenomics for profiling toxicant-induced biological perturbations.
    Kiyosawa N; Manabe S; Yamoto T; Sanbuissho A
    Int J Mol Sci; 2010 Sep; 11(9):3397-412. PubMed ID: 20957103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure.
    Johnson KJ; Auerbach SS; Costa E
    Toxicol Sci; 2020 Jul; 176(1):86-102. PubMed ID: 32384157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Self-Organizing Map of the Fathead Minnow Liver Transcriptome to Identify Consistent Toxicogenomic Patterns across Chemical Fingerprints.
    Krämer S; Busch W; Schüttler A
    Environ Toxicol Chem; 2020 Mar; 39(3):526-537. PubMed ID: 31820487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ToxicoDB: an integrated database to mine and visualize large-scale toxicogenomic datasets.
    Nair SK; Eeles C; Ho C; Beri G; Yoo E; Tkachuk D; Tang A; Nijrabi P; Smirnov P; Seo H; Jennen D; Haibe-Kains B
    Nucleic Acids Res; 2020 Jul; 48(W1):W455-W462. PubMed ID: 32421831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systems toxicology used in nanotoxicology: mechanistic insights into the hepatotoxicity of nano-copper particles from toxicogenomics.
    Yang B; Wang Q; Lei R; Wu C; Shi C; Wang Q; Yuan Y; Wang Y; Luo Y; Hu Z; Ma H; Liao M
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8527-37. PubMed ID: 21121362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A decade of toxicogenomic research and its contribution to toxicological science.
    Chen M; Zhang M; Borlak J; Tong W
    Toxicol Sci; 2012 Dec; 130(2):217-28. PubMed ID: 22790972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TinderMIX: Time-dose integrated modelling of toxicogenomics data.
    Serra A; Fratello M; Del Giudice G; Saarimäki LA; Paci M; Federico A; Greco D
    Gigascience; 2020 May; 9(5):. PubMed ID: 32449777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A retrospective analysis of toxicogenomics in the safety assessment of drug candidates.
    Foster WR; Chen SJ; He A; Truong A; Bhaskaran V; Nelson DM; Dambach DM; Lehman-McKeeman LD; Car BD
    Toxicol Pathol; 2007 Aug; 35(5):621-35. PubMed ID: 17654404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. dbZach toxicogenomic information management system.
    Burgoon LD; Zacharewski TR
    Pharmacogenomics; 2007 Mar; 8(3):287-91. PubMed ID: 17324117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-laboratory study of human in vitro toxicogenomics-based tests as alternative methods for evaluating chemical carcinogenicity: a bioinformatics perspective.
    Herwig R; Gmuender H; Corvi R; Bloch KM; Brandenburg A; Castell J; Ceelen L; Chesne C; Doktorova TY; Jennen D; Jennings P; Limonciel A; Lock EA; McMorrow T; Phrakonkham P; Radford R; Slattery C; Stierum R; Vilardell M; Wittenberger T; Yildirimman R; Ryan M; Rogiers V; Kleinjans J
    Arch Toxicol; 2016 Sep; 90(9):2215-2229. PubMed ID: 26525393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying knowledge-driven mechanistic inference to toxicogenomics.
    Tripodi IJ; Callahan TJ; Westfall JT; Meitzer NS; Dowell RD; Hunter LE
    Toxicol In Vitro; 2020 Aug; 66():104877. PubMed ID: 32387679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicogenomics for the prediction of toxicity related to herbs from traditional Chinese medicine.
    Youns M; Hoheisel JD; Efferth T
    Planta Med; 2010 Dec; 76(17):2019-25. PubMed ID: 20957595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of potential genomic biomarkers of hepatotoxicity caused by reactive metabolites of N-methylformamide: Application of stable isotope labeled compounds in toxicogenomic studies.
    Mutlib A; Jiang P; Atherton J; Obert L; Kostrubsky S; Madore S; Nelson S
    Chem Res Toxicol; 2006 Oct; 19(10):1270-83. PubMed ID: 17040096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of in vivo and in vitro models of toxicity by comparison of toxicogenomics data with the literature.
    Taškova K; Fontaine JF; Mrowka R; Andrade-Navarro MA
    Methods; 2018 Jan; 132():57-65. PubMed ID: 28716510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.