These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1032 related articles for article (PubMed ID: 31020564)

  • 21. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs.
    Kriventseva EV; Kuznetsov D; Tegenfeldt F; Manni M; Dias R; Simão FA; Zdobnov EM
    Nucleic Acids Res; 2019 Jan; 47(D1):D807-D811. PubMed ID: 30395283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CodingQuarry: highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts.
    Testa AC; Hane JK; Ellwood SR; Oliver RP
    BMC Genomics; 2015 Mar; 16(1):170. PubMed ID: 25887563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GO FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data.
    Araujo FA; Barh D; Silva A; Guimarães L; Ramos RTJ
    Sci Rep; 2018 Jan; 8(1):1794. PubMed ID: 29379090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational methods for pseudogene annotation based on sequence homology.
    Harrison PM
    Methods Mol Biol; 2014; 1167():27-39. PubMed ID: 24823769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visualizing Genomic Data Using Gviz and Bioconductor.
    Hahne F; Ivanek R
    Methods Mol Biol; 2016; 1418():335-51. PubMed ID: 27008022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Community gene annotation in practice.
    Loveland JE; Gilbert JG; Griffiths E; Harrow JL
    Database (Oxford); 2012; 2012():bas009. PubMed ID: 22434843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying single copy orthologs in Metazoa.
    Creevey CJ; Muller J; Doerks T; Thompson JD; Arendt D; Bork P
    PLoS Comput Biol; 2011 Dec; 7(12):e1002269. PubMed ID: 22144877
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.
    Han MV; Thomas GW; Lugo-Martinez J; Hahn MW
    Mol Biol Evol; 2013 Aug; 30(8):1987-97. PubMed ID: 23709260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TEnest 2.0: computational annotation and visualization of nested transposable elements.
    Kronmiller BA; Wise RP
    Methods Mol Biol; 2013; 1057():305-19. PubMed ID: 23918438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly and RNA-free annotation of highly heterozygous genomes: The case of the thick-billed murre (Uria lomvia).
    Tigano A; Sackton TB; Friesen VL
    Mol Ecol Resour; 2018 Jan; 18(1):79-90. PubMed ID: 28815912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A De-Novo Genome Analysis Pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies.
    Thakur S; Guttman DS
    BMC Bioinformatics; 2016 Jun; 17(1):260. PubMed ID: 27363390
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Annotated Draft Genome Assemblies for the Northern Bobwhite (
    Oldeschulte DL; Halley YA; Wilson ML; Bhattarai EK; Brashear W; Hill J; Metz RP; Johnson CD; Rollins D; Peterson MJ; Bickhart DM; Decker JE; Sewell JF; Seabury CM
    G3 (Bethesda); 2017 Sep; 7(9):3047-3058. PubMed ID: 28717047
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Draft genomes of two blister beetles Hycleus cichorii and Hycleus phaleratus.
    Wu YM; Li J; Chen XS
    Gigascience; 2018 Mar; 7(3):1-7. PubMed ID: 29444297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seqping: gene prediction pipeline for plant genomes using self-training gene models and transcriptomic data.
    Chan KL; Rosli R; Tatarinova TV; Hogan M; Firdaus-Raih M; Low EL
    BMC Bioinformatics; 2017 Jan; 18(Suppl 1):1426. PubMed ID: 28466793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant genome and transcriptome annotations: from misconceptions to simple solutions.
    Bolger ME; Arsova B; Usadel B
    Brief Bioinform; 2018 May; 19(3):437-449. PubMed ID: 28062412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of coffee transcriptome networks based on gene annotation semantics.
    Castillo LF; Galeano N; Isaza GA; Gaitán A
    J Integr Bioinform; 2012 Jul; 9(3):205. PubMed ID: 22829576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational gene annotation in new genome assemblies using GeneID.
    Blanco E; Abril JF
    Methods Mol Biol; 2009; 537():243-61. PubMed ID: 19378148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Annotation and visualization of parasite, fungi and arthropod genomes with Companion.
    Haese-Hill W; Crouch K; Otto TD
    Nucleic Acids Res; 2024 Jul; 52(W1):W39-W44. PubMed ID: 38752499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yerba mate (Ilex paraguariensis, A. St.-Hil.) de novo transcriptome assembly based on tissue specific genomic expression profiles.
    Fay JV; Watkins CJ; Shrestha RK; Litwiñiuk SL; Talavera Stefani LN; Rojas CA; Argüelles CF; Ferreras JA; Caccamo M; Miretti MM
    BMC Genomics; 2018 Dec; 19(1):891. PubMed ID: 30526481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 52.