BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31020854)

  • 1. Chelator-assisted phytoextraction of arsenic, cadmium and lead by
    Liang Y; Wang X; Guo Z; Xiao X; Peng C; Yang J; Zhou C; Zeng P
    Int J Phytoremediation; 2019; 21(10):1032-1040. PubMed ID: 31020854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoextraction potential of Pteris vittata L. co-planted with woody species for As, Cd, Pb and Zn in contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Feng W; Xin L; Xu Z
    Sci Total Environ; 2019 Feb; 650(Pt 1):594-603. PubMed ID: 30205349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of cadmium, lead, and zinc from multi-metal-contaminated soil using chelate-assisted Sedum alfredii Hance.
    Liang Y; Zhou C; Guo Z; Huang Z; Peng C; Zeng P; Xiao X; Xian Z
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):28319-28327. PubMed ID: 31372951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementarity of co-planting a hyperaccumulator with three metal(loid)-tolerant species for metal(loid)-contaminated soil remediation.
    Zeng P; Guo Z; Xiao X; Peng C; Huang B; Feng W
    Ecotoxicol Environ Saf; 2019 Mar; 169():306-315. PubMed ID: 30458397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoextraction of arsenic-contaminated soil with Pteris vittata in Henan Province, China: comprehensive evaluation of remediation efficiency correcting for atmospheric depositions.
    Lei M; Wan X; Guo G; Yang J; Chen T
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):124-131. PubMed ID: 27928750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production.
    Zeng W; Wan X; Lei M; Chen T
    Sci Total Environ; 2024 Mar; 915():170074. PubMed ID: 38218467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation.
    Xiao X; Chen T; An Z; Lei M; Huang Z; Liao X; Liu Y
    J Environ Sci (China); 2008; 20(1):62-7. PubMed ID: 18572524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pteris vittata coupled with phosphate rock effectively reduced As and Cd uptake by water spinach from contaminated soil.
    Hua CY; Chen JX; Cao Y; Li HB; Chen Y; Ma LQ
    Chemosphere; 2020 May; 247():125916. PubMed ID: 32069716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils.
    Wang K; Liu Y; Song Z; Wang D; Qiu W
    Chemosphere; 2019 Dec; 237():124480. PubMed ID: 31394449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl.
    Chen L; Wang D; Long C; Cui ZX
    Sci Rep; 2019 Dec; 9(1):19817. PubMed ID: 31875012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of indigenous plant species for phytoremediation of metal(loid)-contaminated soil in the Baoshan mining area, China.
    Pan P; Lei M; Qiao P; Zhou G; Wan X; Chen T
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23583-23592. PubMed ID: 31203537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochar-assisted phytoextraction of arsenic in soil using Pteris vittata L.
    Zheng C; Wang X; Liu J; Ji X; Huang B
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36688-36697. PubMed ID: 31741273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison among soil additives for enhancing Pteris vittata L.: Phytoremediation of As-contaminated soil.
    Yang J; Yang SS; Lei M; Yang JX; Wan XM; Chen TB; Wang XL; Guo GH; Guo JM; Liu SQ
    Int J Phytoremediation; 2018; 20(13):1300-1306. PubMed ID: 28485990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoextraction potential of arsenic and cadmium and response of rhizosphere microbial community by intercropping with two types of hyperaccumulators.
    Wang X; Zhou C; Xiao X; Guo Z; Peng C; Wang X
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):91356-91367. PubMed ID: 35896877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].
    Liu QX; Yan XL; Liao XY; Lin LY; Yang J
    Huan Jing Ke Xue; 2015 Aug; 36(8):3056-61. PubMed ID: 26592040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of biochar on the arsenic phytoextraction potential of Pteris vittata in soils from an abandoned arsenic mining site.
    Guo G; Chen S; Zhang D; Wang J; Lei M; Ju T; Wei H
    Chemosphere; 2024 Mar; 352():141389. PubMed ID: 38336043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation potential of Pteris vittata L. under the combined contamination of As and Pb: beneficial interaction between As and Pb.
    Wan XM; Lei M; Chen TB; Zhou GD; Yang J; Zhou XY; Zhang X; Xu RX
    Environ Sci Pollut Res Int; 2014 Jan; 21(1):325-36. PubMed ID: 23764987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of S,S-ethylenediamine disuccinic acid on the phytoextraction efficiency of Solanum nigrum L. and soil quality in Cd-contaminated alkaline wheat soil.
    Wang Y; Xu Y; Qin X; Zhao L; Huang Q; Liang X
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42959-42974. PubMed ID: 33830419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize.
    Ma J; Lei E; Lei M; Liu Y; Chen T
    Chemosphere; 2018 Mar; 194():737-744. PubMed ID: 29247933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata.
    Danh LT; Truong P; Mammucari R; Foster N
    Int J Phytoremediation; 2014; 16(5):429-53. PubMed ID: 24912227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.