BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31020866)

  • 1. A simple approach for assessment of toxicity of nitroaromatic compounds without using complex descriptors and computer codes.
    Keshavarz MH; Akbarzadeh AR
    SAR QSAR Environ Res; 2019 May; 30(5):347-361. PubMed ID: 31020866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of nitroaromatics' composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis.
    Kuz'min VE; Muratov EN; Artemenko AG; Gorb L; Qasim M; Leszczynski J
    Chemosphere; 2008 Jul; 72(9):1373-80. PubMed ID: 18558419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of structural fingerprints for
    Mondal D; Ghosh K; Baidya ATK; Gantait AM; Gayen S
    Toxicol Mech Methods; 2020 May; 30(4):257-265. PubMed ID: 31876230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds.
    Gooch A; Sizochenko N; Sviatenko L; Gorb L; Leszczynski J
    SAR QSAR Environ Res; 2017 Feb; 28(2):133-150. PubMed ID: 28235392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-toxicity relationships of nitroaromatic compounds.
    Isayev O; Rasulev B; Gorb L; Leszczynski J
    Mol Divers; 2006 May; 10(2):233-45. PubMed ID: 16710810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of joint toxicity of nitroaromatic compounds and copper to Photobacterium phosphoreum and QSAR analysis.
    Su L; Zhang X; Yuan X; Zhao Y; Zhang D; Qin W
    J Hazard Mater; 2012 Nov; 241-242():450-5. PubMed ID: 23089062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo toxicity of nitroaromatics: A comprehensive quantitative structure-activity relationship study.
    Gooch A; Sizochenko N; Rasulev B; Gorb L; Leszczynski J
    Environ Toxicol Chem; 2017 Aug; 36(8):2227-2233. PubMed ID: 28169452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting condensed phase heat of formation of nitroaromatic compounds.
    Keshavarz MH
    J Hazard Mater; 2009 Sep; 169(1-3):890-900. PubMed ID: 19501463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR modeling of thermal stability of nitroaromatic compounds: DFT vs. AM1 calculated descriptors.
    Fayet G; Rotureau P; Joubert L; Adamo C
    J Mol Model; 2010 Apr; 16(4):805-12. PubMed ID: 20049498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR analysis of the toxicity of nitroaromatics in Tetrahymena pyriformis: structural factors and possible modes of action.
    Artemenko AG; Muratov EN; Kuz'min VE; Muratov NN; Varlamova EV; Kuz'mina AV; Gorb LG; Golius A; Hill FC; Leszczynski J; Tropsha A
    SAR QSAR Environ Res; 2011; 22(5-6):575-601. PubMed ID: 21714735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus).
    Yan XF; Xiao HM; Gong XD; Ju XH
    Chemosphere; 2005 Apr; 59(4):467-71. PubMed ID: 15788169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New method for calculating densities of nitroaromatic explosive compounds.
    Keshavarz MH
    J Hazard Mater; 2007 Jun; 145(1-2):263-9. PubMed ID: 17174024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents.
    Zhu H; Ye L; Richard A; Golbraikh A; Wright FA; Rusyn I; Tropsha A
    Environ Health Perspect; 2009 Aug; 117(8):1257-64. PubMed ID: 19672406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression.
    Su Q; Lu W; Du D; Chen F; Niu B; Chou KC
    Oncotarget; 2017 Jul; 8(30):49359-49369. PubMed ID: 28467816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple procedure for calculating condensed phase heat of formation of nitroaromatic energetic materials.
    Keshavarz MH
    J Hazard Mater; 2006 Aug; 136(3):425-31. PubMed ID: 16478648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to predict a toxicological property of aromatic compounds in the Tetrahymena pyriformis.
    González MP; Díaz HG; Cabrera MA; Ruiz RM
    Bioorg Med Chem; 2004 Feb; 12(4):735-44. PubMed ID: 14759733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish.
    Di Marzio W; Saenz ME
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):256-62. PubMed ID: 15327885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple correlation for predicting heats of fusion of nitroaromatic carbocyclic energetic compounds.
    Keshavarz MH
    J Hazard Mater; 2008 Jan; 150(2):387-93. PubMed ID: 17548148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using molecular structure for reliable predicting enthalpy of melting of nitroaromatic energetic compounds.
    Semnani A; Keshavarz MH
    J Hazard Mater; 2010 Jun; 178(1-3):264-72. PubMed ID: 20117881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.