These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 31021011)
1. Simultaneous production of industrially important alkaline xylanase-pectinase enzymes by a bacterium at low cost under solid-state fermentation conditions. Kaur A; Varghese LM; Mahajan R Biotechnol Appl Biochem; 2019 Jul; 66(4):574-585. PubMed ID: 31021011 [TBL] [Abstract][Full Text] [Related]
2. Development of strategy for simultaneous enhanced production of alkaline xylanase-pectinase enzymes by a bacterial isolate in short submerged fermentation cycle. Sharma D; Sharma G; Mahajan R Enzyme Microb Technol; 2019 Mar; 122():90-100. PubMed ID: 30638513 [TBL] [Abstract][Full Text] [Related]
3. A novel and cost-effective methodology for enhanced production of industrially valuable alkaline xylano-pectinolytic enzymes cocktail in short solid-state fermentation cycle. Agrawal S; Varghese LM; Mahajan R Biotechnol Prog; 2019 Nov; 35(6):e2872. PubMed ID: 31215769 [TBL] [Abstract][Full Text] [Related]
4. Cost-effective and concurrent production of industrially valuable xylano-pectinolytic enzymes by a bacterial isolate Bacillus pumilus AJK. Kaur A; Singh A; Dua A; Mahajan R Prep Biochem Biotechnol; 2017 Jan; 47(1):8-18. PubMed ID: 26914524 [TBL] [Abstract][Full Text] [Related]
5. Banana Peels: A Promising Substrate for the Coproduction of Pectinase and Xylanase from Zehra M; Syed MN; Sohail M Pol J Microbiol; 2020 Sep; 69(1):19-26. PubMed ID: 32189485 [TBL] [Abstract][Full Text] [Related]
6. Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp. Ahlawat S; Battan B; Dhiman SS; Sharma J; Mandhan RP J Ind Microbiol Biotechnol; 2007 Dec; 34(12):763-70. PubMed ID: 17726619 [TBL] [Abstract][Full Text] [Related]
7. Production of pectinase from deseeded sunflower head by Aspergillus niger in submerged and solid-state conditions. Patil SR; Dayanand A Bioresour Technol; 2006 Nov; 97(16):2054-8. PubMed ID: 16263274 [TBL] [Abstract][Full Text] [Related]
8. Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment. Debing J; Peijun L; Stagnitti F; Xianzhe X; Li L Ecotoxicol Environ Saf; 2006 Jun; 64(2):244-50. PubMed ID: 16406599 [TBL] [Abstract][Full Text] [Related]
9. Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. Patil SR; Dayanand A Bioresour Technol; 2006 Dec; 97(18):2340-4. PubMed ID: 16337373 [TBL] [Abstract][Full Text] [Related]
10. Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application. Gawande PV; Kamat MY J Appl Microbiol; 1999 Oct; 87(4):511-9. PubMed ID: 10583678 [TBL] [Abstract][Full Text] [Related]
11. Effect of physicochemical parameters on the polygalacturonase of an Aspergillus sojae mutant using wheat bran, an agro-industrial waste, via solid-state fermentation. Demir H; Tari C J Sci Food Agric; 2016 Aug; 96(10):3575-82. PubMed ID: 26604188 [TBL] [Abstract][Full Text] [Related]
12. Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Park YS; Kang SW; Lee JS; Hong SI; Kim SW Appl Microbiol Biotechnol; 2002 May; 58(6):761-6. PubMed ID: 12021796 [TBL] [Abstract][Full Text] [Related]
13. Enhanced production of xylanase from locally isolated fungal strain using agro-industrial residues under solid-state fermentation. Abdullah R; Nisar K; Aslam A; Iqtedar M; Naz S Nat Prod Res; 2015; 29(11):1006-11. PubMed ID: 25299357 [TBL] [Abstract][Full Text] [Related]
14. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2014 Apr; 14():29. PubMed ID: 24758479 [TBL] [Abstract][Full Text] [Related]
15. Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation. Martin N; Guez MA; Sette LD; Da Silva R; Gomes E Mikrobiologiia; 2010; 79(3):321-8. PubMed ID: 20734812 [TBL] [Abstract][Full Text] [Related]
16. Improvement of xylanase production in solid-state fermentation by alkali tolerant Aspergillus versicolor MKU3. Jeya M; Thiagarajan S; Gunasekaran P Lett Appl Microbiol; 2005; 41(2):175-8. PubMed ID: 16033517 [TBL] [Abstract][Full Text] [Related]
17. The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. Rodríguez-Fernández DE; Rodríguez-León JA; de Carvalho JC; Sturm W; Soccol CR Bioresour Technol; 2011 Nov; 102(22):10657-62. PubMed ID: 21945204 [TBL] [Abstract][Full Text] [Related]
18. Optimization of xylanase production by Thermomyces lanuginosus in solid state fermentation. Gaffney M; Doyle S; Murphy R Biosci Biotechnol Biochem; 2009 Dec; 73(12):2640-4. PubMed ID: 19966485 [TBL] [Abstract][Full Text] [Related]
19. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
20. Pectinase production by Aspergillus giganteus in solid-state fermentation: optimization, scale-up, biochemical characterization and its application in olive-oil extraction. Ortiz GE; Ponce-Mora MC; Noseda DG; Cazabat G; Saravalli C; López MC; Gil GP; Blasco M; Albertó EO J Ind Microbiol Biotechnol; 2017 Feb; 44(2):197-211. PubMed ID: 27878454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]