These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 31021614)
1. China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Shen W; Han W; Wallington TJ; Winkler SL Environ Sci Technol; 2019 May; 53(10):6063-6072. PubMed ID: 31021614 [TBL] [Abstract][Full Text] [Related]
2. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective. Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267 [TBL] [Abstract][Full Text] [Related]
3. Well-to-wheel greenhouse gas emissions of electric versus combustion vehicles from 2018 to 2030 in the US. Challa R; Kamath D; Anctil A J Environ Manage; 2022 Apr; 308():114592. PubMed ID: 35121453 [TBL] [Abstract][Full Text] [Related]
4. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study. Da C; Gu X; Lu C; Hua R; Chang X; Cheng Y; Qian F; Wang Y Environ Sci Pollut Res Int; 2022 Oct; 29(50):76286-76297. PubMed ID: 35668254 [TBL] [Abstract][Full Text] [Related]
5. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles. Shen W; Han W; Wallington TJ Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334 [TBL] [Abstract][Full Text] [Related]
6. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China. Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393 [TBL] [Abstract][Full Text] [Related]
7. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment. Elgowainy A; Han J; Ward J; Joseck F; Gohlke D; Lindauer A; Ramsden T; Biddy M; Alexander M; Barnhart S; Sutherland I; Verduzco L; Wallington TJ Environ Sci Technol; 2018 Feb; 52(4):2392-2399. PubMed ID: 29298387 [TBL] [Abstract][Full Text] [Related]
8. Regional Heterogeneity in the Emissions Benefits of Electrified and Lightweighted Light-Duty Vehicles. Wu D; Guo F; Field FR; De Kleine RD; Kim HC; Wallington TJ; Kirchain RE Environ Sci Technol; 2019 Sep; 53(18):10560-10570. PubMed ID: 31336049 [TBL] [Abstract][Full Text] [Related]
9. Should India Move toward Vehicle Electrification? Assessing Life-Cycle Greenhouse Gas and Criteria Air Pollutant Emissions of Alternative and Conventional Fuel Vehicles in India. Peshin T; Sengupta S; Azevedo IML Environ Sci Technol; 2022 Jul; 56(13):9569-9582. PubMed ID: 35696339 [TBL] [Abstract][Full Text] [Related]
10. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles. Kim HC; Wallington TJ Environ Sci Technol; 2016 Oct; 50(20):11226-11233. PubMed ID: 27533735 [TBL] [Abstract][Full Text] [Related]
11. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles. Raykin L; MacLean HL; Roorda MJ Environ Sci Technol; 2012 Jun; 46(11):6363-70. PubMed ID: 22568681 [TBL] [Abstract][Full Text] [Related]
12. Effects of Air Emission Externalities on Optimal Ridesourcing Fleet Electrification and Operations. Bruchon MB; Michalek JJ; Azevedo IL Environ Sci Technol; 2021 Mar; 55(5):3188-3200. PubMed ID: 33601882 [TBL] [Abstract][Full Text] [Related]
13. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level. Huo H; Zhang Q; Liu F; He K Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251 [TBL] [Abstract][Full Text] [Related]
14. Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet. Woody M; Vaishnav P; Craig MT; Keoleian GA Environ Sci Technol; 2022 Sep; 56(18):13391-13397. PubMed ID: 36018721 [TBL] [Abstract][Full Text] [Related]
15. Regional Variability and Uncertainty of Electric Vehicle Life Cycle CO₂ Emissions across the United States. Tamayao MA; Michalek JJ; Hendrickson C; Azevedo IM Environ Sci Technol; 2015 Jul; 49(14):8844-55. PubMed ID: 26125323 [TBL] [Abstract][Full Text] [Related]
16. Transport oil product consumption and GHG emission reduction potential in China: An electric vehicle-based scenario analysis. Zheng Y; Li S; Xu S PLoS One; 2019; 14(9):e0222448. PubMed ID: 31525217 [TBL] [Abstract][Full Text] [Related]
17. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections. Keshavarzmohammadian A; Henze DK; Milford JB Environ Sci Technol; 2017 Jun; 51(12):6665-6673. PubMed ID: 28399368 [TBL] [Abstract][Full Text] [Related]
18. Impact assessment of crude oil mix, electricity generation mix, and vehicle technology on road freight emission reduction in China. Jiang Z; Yan R; Gong Z; Guan G Environ Sci Pollut Res Int; 2023 Feb; 30(10):27763-27781. PubMed ID: 36385332 [TBL] [Abstract][Full Text] [Related]
19. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target. Zhu Y; Skerlos S; Xu M; Cooper DR Environ Sci Technol; 2021 Jul; 55(13):9326-9338. PubMed ID: 34106694 [TBL] [Abstract][Full Text] [Related]
20. Charging Strategies to Minimize Greenhouse Gas Emissions of Electrified Delivery Vehicles. Woody M; Vaishnav P; Craig MT; Lewis GM; Keoleian GA Environ Sci Technol; 2021 Jul; 55(14):10108-10120. PubMed ID: 34240846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]