These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 31021638)
1. Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin. Chun S; Son W; Kim H; Lim SK; Pang C; Choi C Nano Lett; 2019 May; 19(5):3305-3312. PubMed ID: 31021638 [TBL] [Abstract][Full Text] [Related]
2. Biometric-Tuned E-Skin Sensor with Real Fingerprints Provides Insights on Tactile Perception: Rosa Parks Had Better Surface Vibrational Sensation than Richard Nixon. Hou S; Huang Q; Zhang H; Chen Q; Wu C; Wu M; Meng C; Yao K; Yu X; Roy VAL; Daoud W; Wang J; Li WJ Adv Sci (Weinh); 2024 Sep; 11(34):e2400234. PubMed ID: 38988056 [TBL] [Abstract][Full Text] [Related]
3. Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring. Ding X; Cao H; Zhang X; Li M; Liu Y Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29799495 [TBL] [Abstract][Full Text] [Related]
4. Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing. Kar E; Bose N; Dutta B; Mukherjee N; Mukherjee S ACS Appl Mater Interfaces; 2019 May; 11(19):17501-17512. PubMed ID: 31007019 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors. Wang K; Lou Z; Wang L; Zhao L; Zhao S; Wang D; Han W; Jiang K; Shen G ACS Nano; 2019 Aug; 13(8):9139-9147. PubMed ID: 31330103 [TBL] [Abstract][Full Text] [Related]
6. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
7. A Stretchable Yarn Embedded Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Multifunctional Pressure Sensing. Dong K; Wu Z; Deng J; Wang AC; Zou H; Chen C; Hu D; Gu B; Sun B; Wang ZL Adv Mater; 2018 Oct; 30(43):e1804944. PubMed ID: 30256476 [TBL] [Abstract][Full Text] [Related]
8. Integrated Flexible, Waterproof, Transparent, and Self-Powered Tactile Sensing Panel. Jiang XZ; Sun YJ; Fan Z; Zhang TY ACS Nano; 2016 Aug; 10(8):7696-704. PubMed ID: 27332110 [TBL] [Abstract][Full Text] [Related]
9. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. Yang Y; Zhang H; Lin ZH; Zhou YS; Jing Q; Su Y; Yang J; Chen J; Hu C; Wang ZL ACS Nano; 2013 Oct; 7(10):9213-22. PubMed ID: 24006962 [TBL] [Abstract][Full Text] [Related]
10. A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. Wang L; Liu Y; Liu Q; Zhu Y; Wang H; Xie Z; Yu X; Zi Y Microsyst Nanoeng; 2020; 6():59. PubMed ID: 34567670 [TBL] [Abstract][Full Text] [Related]
11. Self-Powered Tactile Sensor with Learning and Memory. Wu C; Kim TW; Park JH; Koo B; Sung S; Shao J; Zhang C; Wang ZL ACS Nano; 2020 Feb; 14(2):1390-1398. PubMed ID: 31747246 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization. Shin YE; Park YJ; Ghosh SK; Lee Y; Park J; Ko H Adv Sci (Weinh); 2022 Mar; 9(9):e2105423. PubMed ID: 35072354 [TBL] [Abstract][Full Text] [Related]
13. High Sensitivity Triboelectric Based Flexible Self-Powered Tactile Sensor with Bionic Fingerprint Ring Structure. Hu H; Song J; Zhong Y; Cao J; Han L; Zhang Z; Cheng G; Ding J ACS Sens; 2024 Jun; 9(6):2907-2914. PubMed ID: 38759108 [TBL] [Abstract][Full Text] [Related]
14. Ultra-Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human-Machine Interfaces. Tao K; Chen Z; Yu J; Zeng H; Wu J; Wu Z; Jia Q; Li P; Fu Y; Chang H; Yuan W Adv Sci (Weinh); 2022 Apr; 9(10):e2104168. PubMed ID: 35098703 [TBL] [Abstract][Full Text] [Related]
15. Self-Powered Artificial Mechanoreceptor Based on Triboelectrification for a Neuromorphic Tactile System. Han JK; Tcho IW; Jeon SB; Yu JM; Kim WG; Choi YK Adv Sci (Weinh); 2022 Mar; 9(9):e2105076. PubMed ID: 35032113 [TBL] [Abstract][Full Text] [Related]
16. A Self-Powered Sensor Mimicking Slow- and Fast-Adapting Cutaneous Mechanoreceptors. Chun KY; Son YJ; Jeon ES; Lee S; Han CS Adv Mater; 2018 Mar; 30(12):e1706299. PubMed ID: 29424032 [TBL] [Abstract][Full Text] [Related]
17. Bioinspired Hairy Skin Electronics for Detecting the Direction and Incident Angle of Airflow. Chun S; Son W; Choi C; Min H; Kim J; Lee HJ; Kim D; Kim C; Koh JS; Pang C ACS Appl Mater Interfaces; 2019 Apr; 11(14):13608-13615. PubMed ID: 30868878 [TBL] [Abstract][Full Text] [Related]
18. From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design. Li T; Zou J; Xing F; Zhang M; Cao X; Wang N; Wang ZL ACS Nano; 2017 Apr; 11(4):3950-3956. PubMed ID: 28332823 [TBL] [Abstract][Full Text] [Related]
19. A Self-Powered, Skin Adhesive, and Flexible Human-Machine Interface Based on Triboelectric Nanogenerator. Wu X; Yang Z; Dong Y; Teng L; Li D; Han H; Zhu S; Sun X; Zeng Z; Zeng X; Zheng Q Nanomaterials (Basel); 2024 Aug; 14(16):. PubMed ID: 39195403 [TBL] [Abstract][Full Text] [Related]
20. Response characteristics of cutaneous mechanoreceptors to vibratory stimuli in human glabrous skin. Toma S; Nakajima Y Neurosci Lett; 1995 Jul; 195(1):61-3. PubMed ID: 7478256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]