These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 31021638)

  • 41. Self-Powered Sensors and Flexible Triboelectric Nanogenerator for Powering Portable Electronics.
    Sarkar PK; Maji S; Acharya S
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1741-1746. PubMed ID: 29448653
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Laminated Triboelectric Nanogenerator for Enhanced Self-Powered Pressure-Sensing Performance by Charge Regulation.
    Xu R; Zhu L; Zhang Q; Wang Z; Shen L; Chen Y; Lei H; Ge X; Jiang J; Liu J; Ma Y; Sun X; Wen Z
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40014-40020. PubMed ID: 36000945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging.
    Lin L; Xie Y; Wang S; Wu W; Niu S; Wen X; Wang ZL
    ACS Nano; 2013 Sep; 7(9):8266-74. PubMed ID: 23957827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing.
    Wang H; Li D; Zhong W; Xu L; Jiang T; Wang ZL
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):34251-34257. PubMed ID: 31448893
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cutaneous Ionogel Mechanoreceptors for Soft Machines, Physiological Sensing, and Amputee Prostheses.
    Shen Z; Zhu X; Majidi C; Gu G
    Adv Mater; 2021 Sep; 33(38):e2102069. PubMed ID: 34337793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology.
    Jin L; Tao J; Bao R; Sun L; Pan C
    Sci Rep; 2017 Sep; 7(1):10521. PubMed ID: 28874806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Self-Powered Non-Contact Motion Vector Sensor for Multifunctional Human-Machine Interface.
    Cao J; Fu X; Zhu H; Qu Z; Qi Y; Zhang Z; Zhang Z; Cheng G; Zhang C; Ding J
    Small Methods; 2022 Aug; 6(8):e2200588. PubMed ID: 35733078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-Powered Force Sensors for Multidimensional Tactile Sensing.
    Zhang W; Xi Y; Wang E; Qu X; Yang Y; Fan Y; Shi B; Li Z
    ACS Appl Mater Interfaces; 2022 May; 14(17):20122-20131. PubMed ID: 35452218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self-Powered Wind Sensor System for Detecting Wind Speed and Direction Based on a Triboelectric Nanogenerator.
    Wang J; Ding W; Pan L; Wu C; Yu H; Yang L; Liao R; Wang ZL
    ACS Nano; 2018 Apr; 12(4):3954-3963. PubMed ID: 29595963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications.
    Yuan Z; Zhou T; Yin Y; Cao R; Li C; Wang ZL
    ACS Nano; 2017 Aug; 11(8):8364-8369. PubMed ID: 28738675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Robust Flexible Pressure Sensors Made from Conductive Micropyramids for Manipulation Tasks.
    Ma C; Xu D; Huang YC; Wang P; Huang J; Zhou J; Liu W; Li ST; Huang Y; Duan X
    ACS Nano; 2020 Oct; 14(10):12866-12876. PubMed ID: 32938185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-Powered Tactile Sensor for Gesture Recognition Using Deep Learning Algorithms.
    Yang J; Liu S; Meng Y; Xu W; Liu S; Jia L; Chen G; Qin Y; Han M; Li X
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25629-25637. PubMed ID: 35612540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing.
    Li J; Liu Y; Wu M; Yao K; Gao Z; Gao Y; Huang X; Wong TH; Zhou J; Li D; Li H; Li J; Huang Y; Shi R; Yu J; Yu X
    Fundam Res; 2023 Jan; 3(1):111-117. PubMed ID: 38933565
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Skin-Inspired Artificial Mechanoreceptor for Tactile Enhancement and Integration.
    Li F; Wang R; Song C; Zhao M; Ren H; Wang S; Liang K; Li D; Ma X; Zhu B; Wang H; Hao Y
    ACS Nano; 2021 Oct; 15(10):16422-16431. PubMed ID: 34597014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Flexible Piezoelectret Actuator/Sensor Patch for Mechanical Human-Machine Interfaces.
    Zhong J; Ma Y; Song Y; Zhong Q; Chu Y; Karakurt I; Bogy DB; Lin L
    ACS Nano; 2019 Jun; 13(6):7107-7116. PubMed ID: 31184134
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spike Timing Matters in Novel Neuronal Code Involved in Vibrotactile Frequency Perception.
    Birznieks I; Vickery RM
    Curr Biol; 2017 May; 27(10):1485-1490.e2. PubMed ID: 28479322
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator.
    Wang S; Niu S; Yang J; Lin L; Wang ZL
    ACS Nano; 2014 Dec; 8(12):12004-13. PubMed ID: 25386799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
    Qi K; Wang H; You X; Tao X; Li M; Zhou Y; Zhang Y; He J; Shao W; Cui S
    J Colloid Interface Sci; 2020 Mar; 561():93-103. PubMed ID: 31812870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system.
    Kang D; Pikhitsa PV; Choi YW; Lee C; Shin SS; Piao L; Park B; Suh KY; Kim TI; Choi M
    Nature; 2014 Dec; 516(7530):222-6. PubMed ID: 25503234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A skin-inspired organic digital mechanoreceptor.
    Tee BC; Chortos A; Berndt A; Nguyen AK; Tom A; McGuire A; Lin ZC; Tien K; Bae WG; Wang H; Mei P; Chou HH; Cui B; Deisseroth K; Ng TN; Bao Z
    Science; 2015 Oct; 350(6258):313-6. PubMed ID: 26472906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.