These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31021647)

  • 1. Synthesis of the Hexasaccharide Fragment of Landomycin A Using a Mild, Reagent-Controlled Approach.
    Yalamanchili S; Lloyd D; Bennett CS
    Org Lett; 2019 May; 21(10):3674-3677. PubMed ID: 31021647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective Synthesis of S-Linked Hexasaccharide of Landomycin A via Umpolung S-Glycosylation.
    Baryal KN; Zhu J
    Org Lett; 2015 Sep; 17(18):4530-3. PubMed ID: 26334208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tackling the challenges in the total synthesis of landomycin A.
    Yang X; Wang P; Yu B
    Chem Rec; 2013 Feb; 13(1):70-84. PubMed ID: 23389835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient synthesis of the hexasaccharide fragment of landomycin A: using phenyl 2,3-O-thionocarbonyl-1-thioglycosides as 2-deoxy-beta-glycoside precursors.
    Yu B; Wang P
    Org Lett; 2002 May; 4(11):1919-22. PubMed ID: 12027647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and stereoselective synthesis of 1,3-cis-3- arylsulphonaminodeoxydisaccharides and oligosaccharides.
    Ding F; William R; Cai S; Ma J; Liu XW
    J Org Chem; 2012 Jun; 77(12):5245-54. PubMed ID: 22651548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the synthesis of landomycin A. Synthesis of the originally assigned structure of the aglycone, landomycinone, and revision of structure.
    Roush WR; Neitz RJ
    J Org Chem; 2004 Jul; 69(15):4906-12. PubMed ID: 15255715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reagent-Controlled α-Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide.
    Romeo JR; McDermott L; Bennett CS
    Org Lett; 2020 May; 22(9):3649-3654. PubMed ID: 32281384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Improved Approach to the Direct Construction of 2-Deoxy-β-Linked Sugars: Applications to Oligosaccharide Synthesis.
    Lloyd D; Bennett CS
    Chemistry; 2018 May; 24(30):7610-7614. PubMed ID: 29572995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial synthesis of deoxyhexasaccharides related to the landomycin A sugar moiety, based on an orthogonal deprotection strategy.
    Tanaka H; Yamaguchi S; Yoshizawa A; Takagi M; Shin-ya K; Takahashi T
    Chem Asian J; 2010 Jun; 5(6):1407-24. PubMed ID: 20480491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reagent Controlled Direct Dehydrative Glycosylation with 2-Deoxy Sugars: Construction of the Saquayamycin Z Pentasaccharide.
    Mizia JC; Bennett CS
    Org Lett; 2019 Aug; 21(15):5922-5927. PubMed ID: 31305082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LanGT2 Catalyzes the First Glycosylation Step during landomycin A biosynthesis.
    Luzhetskyy A; Taguchi T; Fedoryshyn M; Dürr C; Wohlert SE; Novikov V; Bechthold A
    Chembiochem; 2005 Aug; 6(8):1406-10. PubMed ID: 15977274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved synthesis of the Kijanimicin oligodeoxytetrasaccharide.
    Thiem J; Sajus H
    Carbohydr Res; 2019 Jan; 471():19-27. PubMed ID: 30412829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of bench-stable and readily available nickel(II) triflate for access to 1,2-cis-2-aminoglycosides.
    Sletten ET; Ramadugu SK; Nguyen HM
    Carbohydr Res; 2016 Nov; 435():195-207. PubMed ID: 27816838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the substrate specificity of glycosyltransferases involved in landomycins A and E biosynthesis.
    Erb A; Krauth C; Luzhetskyy A; Bechthold A
    Appl Microbiol Biotechnol; 2009 Jul; 83(6):1067-76. PubMed ID: 19352642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly stereoselective synthesis of aminoglycosides via rhodium-catalyzed and substrate-controlled aziridination of glycals.
    Lorpitthaya R; Sophy KB; Kuo JL; Liu XW
    Org Biomol Chem; 2009 Apr; 7(7):1284-7. PubMed ID: 19300810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of the trisaccharide portion of the immunologic adjuvant QS-21A via sulfonium-mediated oxidative and dehydrative glycosylation.
    Kim YJ; Gin DY
    Org Lett; 2001 Jun; 3(12):1801-4. PubMed ID: 11405715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Synthesis of the Nonreducing Hexasaccharide Fragment of Axinelloside A Based on a Stepwise Glycosylation Approach.
    Li SJ; Fang Q; Huang YW; Luo YY; Mu XD; Li L; Yin XC; Yang JS
    Org Lett; 2022 Oct; 24(39):7088-7094. PubMed ID: 36169189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regioselective glycosylation of neamine core: a facile entry to kanamycin B related analogues.
    Chou CH; Wu CS; Chen CH; Lu LD; Kulkarni SS; Wong CH; Hung SC
    Org Lett; 2004 Feb; 6(4):585-8. PubMed ID: 14961629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical synthesis of a hyaluronic acid decasaccharide.
    Lu X; Kamat MN; Huang L; Huang X
    J Org Chem; 2009 Oct; 74(20):7608-17. PubMed ID: 19764799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel strategy towards the synthesis of orthogonally functionalised 4-aminoglycosides.
    van den Bos LJ; Codée JD; van Boom JH; Overkleeft HS; van der Marel GA
    Org Biomol Chem; 2003 Dec; 1(23):4160-5. PubMed ID: 14685319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.