These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31021786)

  • 1. Granular Fuzzy Modeling Guided Through the Synergy of Granulating Output Space and Clustering Input Subspaces.
    Lu W; Pedrycz W; Yang J; Liu X
    IEEE Trans Cybern; 2021 May; 51(5):2625-2638. PubMed ID: 31021786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The design of free structure granular mappings: the use of the principle of justifiable granularity.
    Pedrycz W; Al-Hmouz R; Morfeq A; Balamash A
    IEEE Trans Cybern; 2013 Dec; 43(6):2105-13. PubMed ID: 23757519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Granular Model: A Method Driven by Hyper-Box Iteration Granulation.
    Lu W; Ma C; Pedrycz W; Yang J
    IEEE Trans Cybern; 2023 May; 53(5):2899-2913. PubMed ID: 34767519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Development of Granular Input Space in System Modeling.
    Zhu X; Pedrycz W; Li Z
    IEEE Trans Cybern; 2021 Mar; 51(3):1639-1650. PubMed ID: 30892261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields.
    Park HS; Pedrycz W; Oh SK
    IEEE Trans Neural Netw; 2009 Oct; 20(10):1604-16. PubMed ID: 19674950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimization of allocation of information granularity in the interpretation of data structures: toward granular fuzzy clustering.
    Pedrycz W; Bargiela A
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):582-90. PubMed ID: 22067434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of double fuzzy clustering-driven context neural networks.
    Kim EH; Oh SK; Pedrycz W
    Neural Netw; 2018 Aug; 104():1-14. PubMed ID: 29689457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Granular Fuzzy Rule-Based Modeling With Incomplete Data Representation.
    Hu X; Shen Y; Pedrycz W; Li Y; Wu G
    IEEE Trans Cybern; 2022 Jul; 52(7):6420-6433. PubMed ID: 33909582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A characterization of electrocardiogram signals through optimal allocation of information granularity.
    Gacek A; Pedrycz W
    Artif Intell Med; 2012 Feb; 54(2):125-34. PubMed ID: 22000296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incremental Fuzzy Clustering-Based Neural Networks Driven With the Aid of Dynamic Input Space Partition and Quasi-Fuzzy Local Models.
    Zhang C; Oh SK; Fu Z; Pedrycz W
    IEEE Trans Cybern; 2024 May; 54(5):2978-2991. PubMed ID: 37015632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Granular Description of Data Structures: A Two-Phase Design.
    Ouyang T; Pedrycz W; Reyes-Galaviz OF; Pizzi NJ
    IEEE Trans Cybern; 2021 Apr; 51(4):1902-1912. PubMed ID: 30605118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering Homogeneous Granular Data: Formation and Evaluation.
    Shen Y; Pedrycz W; Wang X
    IEEE Trans Cybern; 2019 Apr; 49(4):1391-1402. PubMed ID: 29994448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular Data Description: Designing Ellipsoidal Information Granules.
    Zhu X; Pedrycz W; Li Z
    IEEE Trans Cybern; 2017 Dec; 47(12):4475-4484. PubMed ID: 28113415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Granular Approach to Interval Output Estimation for Rule-Based Fuzzy Models.
    Zhu X; Pedrycz W; Li Z
    IEEE Trans Cybern; 2022 Jul; 52(7):7029-7038. PubMed ID: 33151886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linguistic models and linguistic modeling.
    Pedryez W; Vasilakos AV
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):745-57. PubMed ID: 18252354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weighted Fuzzy Clustering for Time Series With Trend-Based Information Granulation.
    Guo H; Wan M; Wang L; Liu X; Pedrycz W
    IEEE Trans Cybern; 2024 Feb; 54(2):903-914. PubMed ID: 35943996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid clustering and gradient descent approach for fuzzy modeling.
    Wong CC; Chen CC
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):686-93. PubMed ID: 18252349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm.
    Yeh CY; Jeng WH; Lee SJ
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2296-309. PubMed ID: 22010148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Fuzzy Rule-Based Models With Collaborative Fuzzy Clustering.
    Hu X; Shen Y; Pedrycz W; Wang X; Gacek A; Liu B
    IEEE Trans Cybern; 2022 Jul; 52(7):6406-6419. PubMed ID: 33878000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing and Clustering in the Environment of Order-2 Information Granules.
    Pedrycz W
    IEEE Trans Cybern; 2023 Sep; 53(9):5414-5423. PubMed ID: 35427227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.