These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31021809)

  • 1. Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal.
    Guan S; Khan AA; Sikdar S; Chitnis PV
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):568-576. PubMed ID: 31021809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Deep Learning Network for Mitigating Limited-view and Under-sampling Artifacts in Ring-shaped Photoacoustic Tomography.
    Zhang H; Li H; Nyayapathi N; Wang D; Le A; Ying L; Xia J
    Comput Med Imaging Graph; 2020 Sep; 84():101720. PubMed ID: 32679469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artifact reduction in photoacoustic images by generating virtual dense array sensor from hemispheric sparse array sensor using deep learning.
    Yamakawa M; Shiina T
    J Med Ultrason (2001); 2024 Apr; 51(2):169-183. PubMed ID: 38480548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing Artifacts in Transcranial Photoacoustic Imaging With Polarized Self-Attention Dense-UNet.
    Li B; Lu M; Zhou T; Bu M; Gu W; Wang J; Zhu Q; Liu X; Ta D
    Ultrasound Med Biol; 2024 Oct; 50(10):1530-1543. PubMed ID: 39013725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigating Under-Sampling Artifacts in 3D Photoacoustic Imaging Using Res-UNet Based on Digital Breast Phantom.
    Huo H; Deng H; Gao J; Duan H; Ma C
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning.
    Allman D; Reiter A; Bell MAL
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1464-1477. PubMed ID: 29870374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAD-UNet: a Residual, Attention-Based, Dense UNet for CT Sparse Reconstruction.
    Qiao Z; Du C
    J Digit Imaging; 2022 Dec; 35(6):1748-1758. PubMed ID: 35882689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive machine learning method for photoacoustic computed tomography based on sparse array sensor data.
    Wang R; Zhu J; Meng Y; Wang X; Chen R; Wang K; Li C; Shi J
    Comput Methods Programs Biomed; 2023 Dec; 242():107822. PubMed ID: 37832425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography.
    Zheng S; Xiangyang Y
    Comput Biol Med; 2020 Jan; 116():103587. PubMed ID: 32001014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid Neural Network for Photoacoustic Imaging Reconstruction.
    Lan H; Zhou K; Yang C; Liu J; Gao S; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6367-6370. PubMed ID: 31947299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressed Sensing With a Gaussian Scale Mixture Model for Limited View Photoacoustic Computed Tomography In Vivo.
    Meng J; Liu C; Kim J; Kim C; Song L
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818808222. PubMed ID: 30373467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal.
    Zheng S; Duoduo H; Yuan Y
    Comput Biol Med; 2016 Sep; 76():60-8. PubMed ID: 27403571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High frame rate (∼3 Hz) circular photoacoustic tomography using single-element ultrasound transducer aided with deep learning.
    Rajendran P; Pramanik M
    J Biomed Opt; 2022 Jun; 27(6):066005. PubMed ID: 36452448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates.
    Hossain MB; Kwon KC; Imtiaz SM; Nam OS; Jeon SH; Kim N
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging.
    Farnia P; Mohammadi M; Najafzadeh E; Alimohamadi M; Makkiabadi B; Ahmadian A
    Biomed Phys Eng Express; 2020 Jun; 6(4):045019. PubMed ID: 33444279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Progress of motion artifact correction in photoacoustic microscopy and photoacoustic tomography].
    Du J; Sun Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):369-378. PubMed ID: 33913298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer.
    Vu T; Li M; Humayun H; Zhou Y; Yao J
    Exp Biol Med (Maywood); 2020 Apr; 245(7):597-605. PubMed ID: 32208974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning.
    Guan S; Khan AA; Sikdar S; Chitnis PV
    Sci Rep; 2020 May; 10(1):8510. PubMed ID: 32444649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.