BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31021809)

  • 1. Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal.
    Guan S; Khan AA; Sikdar S; Chitnis PV
    IEEE J Biomed Health Inform; 2020 Feb; 24(2):568-576. PubMed ID: 31021809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Deep Learning Network for Mitigating Limited-view and Under-sampling Artifacts in Ring-shaped Photoacoustic Tomography.
    Zhang H; Li H; Nyayapathi N; Wang D; Le A; Ying L; Xia J
    Comput Med Imaging Graph; 2020 Sep; 84():101720. PubMed ID: 32679469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigating Under-Sampling Artifacts in 3D Photoacoustic Imaging Using Res-UNet Based on Digital Breast Phantom.
    Huo H; Deng H; Gao J; Duan H; Ma C
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning.
    Allman D; Reiter A; Bell MAL
    IEEE Trans Med Imaging; 2018 Jun; 37(6):1464-1477. PubMed ID: 29870374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RAD-UNet: a Residual, Attention-Based, Dense UNet for CT Sparse Reconstruction.
    Qiao Z; Du C
    J Digit Imaging; 2022 Dec; 35(6):1748-1758. PubMed ID: 35882689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive machine learning method for photoacoustic computed tomography based on sparse array sensor data.
    Wang R; Zhu J; Meng Y; Wang X; Chen R; Wang K; Li C; Shi J
    Comput Methods Programs Biomed; 2023 Dec; 242():107822. PubMed ID: 37832425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image reconstruction based on compressed sensing for sparse-data endoscopic photoacoustic tomography.
    Zheng S; Xiangyang Y
    Comput Biol Med; 2020 Jan; 116():103587. PubMed ID: 32001014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Neural Network for Photoacoustic Imaging Reconstruction.
    Lan H; Zhou K; Yang C; Liu J; Gao S; Gao F
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6367-6370. PubMed ID: 31947299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressed Sensing With a Gaussian Scale Mixture Model for Limited View Photoacoustic Computed Tomography In Vivo.
    Meng J; Liu C; Kim J; Kim C; Song L
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818808222. PubMed ID: 30373467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal.
    Zheng S; Duoduo H; Yuan Y
    Comput Biol Med; 2016 Sep; 76():60-8. PubMed ID: 27403571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates.
    Hossain MB; Kwon KC; Imtiaz SM; Nam OS; Jeon SH; Kim N
    Bioengineering (Basel); 2022 Dec; 10(1):. PubMed ID: 36671594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High frame rate (∼3 Hz) circular photoacoustic tomography using single-element ultrasound transducer aided with deep learning.
    Rajendran P; Pramanik M
    J Biomed Opt; 2022 Jun; 27(6):066005. PubMed ID: 36452448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress of motion artifact correction in photoacoustic microscopy and photoacoustic tomography].
    Du J; Sun Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Apr; 38(2):369-378. PubMed ID: 33913298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality photoacoustic image reconstruction based on deep convolutional neural network: towards intra-operative photoacoustic imaging.
    Farnia P; Mohammadi M; Najafzadeh E; Alimohamadi M; Makkiabadi B; Ahmadian A
    Biomed Phys Eng Express; 2020 Jun; 6(4):045019. PubMed ID: 33444279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generative adversarial network for artifact removal in photoacoustic computed tomography with a linear-array transducer.
    Vu T; Li M; Humayun H; Zhou Y; Yao J
    Exp Biol Med (Maywood); 2020 Apr; 245(7):597-605. PubMed ID: 32208974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning.
    Guan S; Khan AA; Sikdar S; Chitnis PV
    Sci Rep; 2020 May; 10(1):8510. PubMed ID: 32444649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaching closed spherical, full-view detection for photoacoustic tomography.
    Yip LC; Omidi P; Raščevska E; Carson JJ
    J Biomed Opt; 2022 Aug; 27(8):. PubMed ID: 36042544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-segmented feature coupling for jointly reconstructing initial pressure and speed of sound in photoacoustic computed tomography.
    Deng K; Wang X; Cai C; Cui M; Zuo H; Luo J; Ma C
    J Biomed Opt; 2022 Jul; 27(7):. PubMed ID: 35778781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.