BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31022544)

  • 1. Effect of co-existing Co
    Tan L; Zhao C; Tan X; Wang X; Feng J; Fang M; Ai Y; Hayat T; Sun L; Wang X
    Sci Total Environ; 2019 Jul; 674():544-553. PubMed ID: 31022544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic studies on the binding of metal ions in aggregates of humic acid: Aggregation kinetics, spectroscopic analyses and MD simulations.
    Tan L; Yu Z; Tan X; Fang M; Wang X; Wang J; Xing J; Ai Y; Wang X
    Environ Pollut; 2019 Mar; 246():999-1007. PubMed ID: 31159149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coagulation behavior of humic acid in aqueous solutions containing Cs
    Tan L; Tan X; Mei H; Ai Y; Sun L; Zhao G; Hayat T; Alsaedi A; Chen C; Wang X
    Environ Pollut; 2018 May; 236():835-843. PubMed ID: 29462778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO
    Wang D; Wang P; Wang C; Ao Y
    Environ Pollut; 2019 May; 248():834-844. PubMed ID: 30856499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Cd(II) on the stability of humic acid-coated nano-TiO
    Wang L; Lu Y; Yang C; Chen C; Huang W; Dang Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23144-23152. PubMed ID: 28828557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coagulation mechanisms of humic acid in metal ions solution under different pH conditions: A molecular dynamics simulation.
    Ai Y; Zhao C; Sun L; Wang X; Liang L
    Sci Total Environ; 2020 Feb; 702():135072. PubMed ID: 31731124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.
    Wang L; Yang X; Wang Q; Zeng Y; Ding L; Jiang W
    J Environ Sci (China); 2017 Jan; 51():248-255. PubMed ID: 28115136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of calcium ions on the colloidal stability of surface-modified nano zero-valent iron in the absence or presence of humic acid.
    Dong H; Lo IM
    Water Res; 2013 May; 47(7):2489-96. PubMed ID: 23466217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation behaviour of black carbon in aquatic solution: Effect of ionic strength and coexisting metals.
    Dhangar K; Kumar M; Aouad M; Mahlknecht J; Raval NP
    Chemosphere; 2023 Jan; 311(Pt 2):137088. PubMed ID: 36332736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Effect of pH on the Solubility and Aggregation Extent of Humic Acid in Solution by Combining Simulation and the Experiment.
    Lan T; Wu P; Liu Z; Stroet M; Liao J; Chai Z; Mark AE; Liu N; Wang D
    Environ Sci Technol; 2022 Jan; 56(2):917-927. PubMed ID: 34981918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement.
    Meng Z; Hashmi SM; Elimelech M
    J Colloid Interface Sci; 2013 Feb; 392():27-33. PubMed ID: 23211871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative particle dynamic simulation and experimental assessment of the impacts of humic substances on aqueous aggregation and dispersion of engineered nanoparticles.
    Wang Z; Quik JTK; Song L; Wouterse M; Peijnenburg WJGM
    Environ Toxicol Chem; 2018 Apr; 37(4):1024-1031. PubMed ID: 29240259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling.
    Li K; Chen Y
    J Hazard Mater; 2012 Mar; 209-210():264-70. PubMed ID: 22285915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bound and unbound humic acids perform different roles in the aggregation and deposition of multi-walled carbon nanotubes.
    Yang X; Wang Q; Qu X; Jiang W
    Sci Total Environ; 2017 May; 586():738-745. PubMed ID: 28202237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems.
    Liu Y; Huang Z; Zhou J; Tang J; Yang C; Chen C; Huang W; Dang Z
    Water Res; 2020 Nov; 186():116316. PubMed ID: 32829180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.
    Chen KL; Elimelech M
    J Colloid Interface Sci; 2007 May; 309(1):126-34. PubMed ID: 17331529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coagulation kinetics of humic aggregates in mono- and di-valent electrolyte solutions.
    Wang LF; Wang LL; Ye XD; Li WW; Ren XM; Sheng GP; Yu HQ; Wang XK
    Environ Sci Technol; 2013 May; 47(10):5042-9. PubMed ID: 23590432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.