These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 31022557)

  • 1. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine.
    Cidonio G; Glinka M; Dawson JI; Oreffo ROC
    Biomaterials; 2019 Jul; 209():10-24. PubMed ID: 31022557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
    Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J
    Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprinting stem cells: building physiological tissues one cell at a time.
    Scognamiglio C; Soloperto A; Ruocco G; Cidonio G
    Am J Physiol Cell Physiol; 2020 Sep; 319(3):C465-C480. PubMed ID: 32639873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration.
    Alcala-Orozco CR; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Acta Biomater; 2021 Sep; 132():188-216. PubMed ID: 33713862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocomposite Clay-Based Bioinks for Skeletal Tissue Engineering.
    Cidonio G; Glinka M; Kim YH; Dawson JI; Oreffo ROC
    Methods Mol Biol; 2021; 2147():63-72. PubMed ID: 32840811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in volumetric bioprinting.
    Jing S; Lian L; Hou Y; Li Z; Zheng Z; Li G; Tang G; Xie G; Xie M
    Biofabrication; 2023 Nov; 16(1):. PubMed ID: 37922535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue.
    Dubey N; Ferreira JA; Malda J; Bhaduri SB; Bottino MC
    ACS Appl Mater Interfaces; 2020 May; 12(21):23752-23763. PubMed ID: 32352748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide lipid-based hydrogel as a new biomaterial ink for biofabrication.
    Dessane B; Smirani R; Bouguéon G; Kauss T; Ribot E; Devillard R; Barthélémy P; Naveau A; Crauste-Manciet S
    Sci Rep; 2020 Feb; 10(1):2850. PubMed ID: 32071330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triblock Copolymer Bioinks in Hydrogel Three-Dimensional Printing for Regenerative Medicine: A Focus on Pluronic F127.
    Shamma RN; Sayed RH; Madry H; El Sayed NS; Cucchiarini M
    Tissue Eng Part B Rev; 2022 Apr; 28(2):451-463. PubMed ID: 33820451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D bioprinting for engineering complex tissues.
    Mandrycky C; Wang Z; Kim K; Kim DH
    Biotechnol Adv; 2016; 34(4):422-434. PubMed ID: 26724184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional bioprinting in tissue engineering and regenerative medicine.
    Gao G; Cui X
    Biotechnol Lett; 2016 Feb; 38(2):203-11. PubMed ID: 26466597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs.
    Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA
    Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces.
    Diloksumpan P; de Ruijter M; Castilho M; Gbureck U; Vermonden T; van Weeren PR; Malda J; Levato R
    Biofabrication; 2020 Feb; 12(2):025014. PubMed ID: 31918421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinting of a stem cell-laden, multi-material tubular composite: An approach for spinal cord repair.
    Hamid OA; Eltaher HM; Sottile V; Yang J
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111707. PubMed ID: 33545866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.