These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31022576)

  • 1. Study on the effect of condensing temperature of walnut shells pyrolysis vapors on the composition and properties of bio-oil.
    Wang C; Luo Z; Diao R; Zhu X
    Bioresour Technol; 2019 Aug; 285():121370. PubMed ID: 31022576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study on composition evolution of biomass pyrolysis vapors with condensing temperature in a vertical tubular condenser.
    Wang C; Sun M; Deng J; Zhu X
    Bioresour Technol; 2020 Jul; 307():123252. PubMed ID: 32247273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual experimental study on the effect of heat exchange area on the evolution of biomass pyrolysis vapors in a vertical indirect condensing field.
    Wang C; Wang R; Chen T; Zhu X
    Bioresour Technol; 2022 Mar; 348():126686. PubMed ID: 35007731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study on the composition evolution and selective separation of biomass pyrolysis vapors in the four-staged indirect heat exchangers.
    Wang C; Yang Y; Ma Y; Zhu X
    Bioresour Technol; 2021 Jul; 332():125115. PubMed ID: 33839512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect.
    Chen W; Chen Y; Yang H; Xia M; Li K; Chen X; Chen H
    Bioresour Technol; 2017 Dec; 245(Pt A):860-868. PubMed ID: 28926919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of linear and nonlinear function to describe and predict componential evolution of biomass pyrolysis vapors during condensation in a tubular indirect heat exchanger.
    Wang C; Huang Y; Diao R; Zhu X
    Bioresour Technol; 2021 Nov; 340():125654. PubMed ID: 34332448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres.
    Alvarez J; Amutio M; Lopez G; Santamaria L; Bilbao J; Olazar M
    Waste Manag; 2019 Feb; 85():385-395. PubMed ID: 30803593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.
    Fermanelli CS; Córdoba A; Pierella LB; Saux C
    Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils.
    Hossain MM; Scott IM; Berruti F; Briens C
    J Environ Sci Health B; 2016 Dec; 51(12):860-867. PubMed ID: 27715497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upgrading of bio-oil via solar pyrolysis of the biomass pretreated with aqueous phase bio-oil washing, solar drying, and solar torrefaction.
    Chen D; Cen K; Cao X; Zhang J; Chen F; Zhou J
    Bioresour Technol; 2020 Jun; 305():123130. PubMed ID: 32173260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system.
    Wang Y; Zeng Z; Tian X; Dai L; Jiang L; Zhang S; Wu Q; Wen P; Fu G; Liu Y; Ruan R
    Bioresour Technol; 2018 Dec; 269():162-168. PubMed ID: 30172179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel insights into the enrichment of phenols from walnut shell pyrolysis loop: Torrefaction coupled fractional condensation.
    Zhu X; Luo Z; Zhu X
    Waste Manag; 2021 Jul; 131():462-470. PubMed ID: 34271394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-pyrolysis of microalgae and other biomass wastes for the production of high-quality bio-oil: Progress and prospective.
    Su G; Ong HC; Gan YY; Chen WH; Chong CT; Ok YS
    Bioresour Technol; 2022 Jan; 344(Pt B):126096. PubMed ID: 34626763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature.
    Chen W; Chen Y; Yang H; Li K; Chen X; Chen H
    Bioresour Technol; 2018 Feb; 249():247-253. PubMed ID: 29049983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.
    Li N; Wang X; Bai X; Li Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2015 Oct; 31(10):1501-11. PubMed ID: 26964339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis of solid waste residues from Lemon Myrtle essential oils extraction for bio-oil production.
    Abu Bakar MS; Ahmed A; Jeffery DM; Hidayat S; Sukri RS; Mahlia TMI; Jamil F; Khurrum MS; Inayat A; Moogi S; Park YK
    Bioresour Technol; 2020 Dec; 318():123913. PubMed ID: 32753242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of bio-oil from fast pyrolysis of biomass using a pilot-scale circulating fluidized bed reactor and its characterization.
    Park JY; Kim JK; Oh CH; Park JW; Kwon EE
    J Environ Manage; 2019 Mar; 234():138-144. PubMed ID: 30616185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures.
    Chang G; Miao P; Yan X; Wang G; Guo Q
    Bioresour Technol; 2018 Apr; 253():214-219. PubMed ID: 29351874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.