These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
501 related articles for article (PubMed ID: 31022893)
21. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Zulkepli N; Yunas J; Mohamed MA; Hamzah AA Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34206662 [TBL] [Abstract][Full Text] [Related]
22. Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films Gonçalves Dalkiranis G; Ferrando-Villalba P; Lopeandia-Fernández A; Abad-Muñoz L; Rodríguez-Viejo J Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909519 [TBL] [Abstract][Full Text] [Related]
23. Nanoporous Si as an efficient thermoelectric material. Lee JH; Galli GA; Grossman JC Nano Lett; 2008 Nov; 8(11):3750-4. PubMed ID: 18947211 [TBL] [Abstract][Full Text] [Related]
24. Thermoelectric Mixed Thick-/Thin Film Microgenerators Based on Constantan/Silver. Gierczak M; Prażmowska-Czajka J; Dziedzic A Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29329203 [TBL] [Abstract][Full Text] [Related]
25. Application of High-Throughput Seebeck Microprobe Measurements on Thermoelectric Half-Heusler Thin Film Combinatorial Material Libraries. Ziolkowski P; Wambach M; Ludwig A; Mueller E ACS Comb Sci; 2018 Jan; 20(1):1-18. PubMed ID: 29266920 [TBL] [Abstract][Full Text] [Related]
26. Decouple electronic and phononic transport in nanotwinned structures: a new strategy for enhancing the figure-of-merit of thermoelectrics. Zhou Y; Gong X; Xu B; Hu M Nanoscale; 2017 Jul; 9(28):9987-9996. PubMed ID: 28681894 [TBL] [Abstract][Full Text] [Related]
27. High Thermoelectric Performance of Non-Stoichiometric and Oriented GeTe Thin Films. Zhang X; Lu X; Jiang P; Bao X Small; 2023 Dec; 19(49):e2303710. PubMed ID: 37612819 [TBL] [Abstract][Full Text] [Related]
29. Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu Mallick MM; Franke L; Rösch AG; Ahmad S; Geßwein H; Eggeler YM; Rohde M; Lemmer U ACS Appl Mater Interfaces; 2021 Dec; 13(51):61386-61395. PubMed ID: 34910878 [TBL] [Abstract][Full Text] [Related]
30. Thin-film thermoelectric devices with high room-temperature figures of merit. Venkatasubramanian R; Siivola E; Colpitts T; O'Quinn B Nature; 2001 Oct; 413(6856):597-602. PubMed ID: 11595940 [TBL] [Abstract][Full Text] [Related]
31. Nanostructured Metal Tellurides and Their Heterostructures for Thermoelectric Applications-A Review. Karunanithy M; Prabhavathi G; Beevi AH; Ibraheem BHA; Kaviyarasu K; Nivetha S; Punithavelan N; Ayeshamariam A; Jayachandran M J Nanosci Nanotechnol; 2018 Oct; 18(10):6680-6707. PubMed ID: 29954484 [TBL] [Abstract][Full Text] [Related]
32. Enhanced thermoelectric properties of lightly Nb doped SrTiO Bhansali S; Khunsin W; Chatterjee A; Santiso J; Abad B; Martin-Gonzalez M; Jakob G; Sotomayor Torres CM; Chávez-Angel E Nanoscale Adv; 2019 Sep; 1(9):3647-3653. PubMed ID: 36133557 [TBL] [Abstract][Full Text] [Related]
33. Thermoelectric performance of restacked MoS2 nanosheets thin-film. Wang T; Liu C; Xu J; Zhu Z; Liu E; Hu Y; Li C; Jiang F Nanotechnology; 2016 Jul; 27(28):285703. PubMed ID: 27256215 [TBL] [Abstract][Full Text] [Related]
34. Achieving Out-of-Plane Thermoelectric Figure of Merit Park NW; Lee WY; Yoon YS; Kim GS; Yoon YG; Lee SK ACS Appl Mater Interfaces; 2019 Oct; 11(41):38247-38254. PubMed ID: 31542917 [TBL] [Abstract][Full Text] [Related]
35. Synthesis and Characterization of Al- and SnO Latronico G; Singh S; Mele P; Darwish A; Sarkisov S; Pan SW; Kawamura Y; Sekine C; Baba T; Mori T; Takeuchi T; Ichinose A; Wilson S Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832325 [TBL] [Abstract][Full Text] [Related]
36. A setup for measuring the Seebeck coefficient and the electrical resistivity of bulk thermoelectric materials. Fu Q; Xiong Y; Zhang W; Xu D Rev Sci Instrum; 2017 Sep; 88(9):095111. PubMed ID: 28964241 [TBL] [Abstract][Full Text] [Related]
37. Engineering the Doping Efficiency in Pentacene Thin Films for High Thermoelectric Performance. Xing W; Wu S; Liang Y; Sun Y; Zou Y; Liu L; Xu W; Zhu D ACS Appl Mater Interfaces; 2020 Jul; 12(26):29540-29548. PubMed ID: 32506899 [TBL] [Abstract][Full Text] [Related]
38. Low thermal conductivity and improved thermoelectric performance of nanocrystalline silicon germanium films by sputtering. Taborda JA; Romero JJ; Abad B; Muñoz-Rojo M; Mello A; Briones F; Gonzalez MS Nanotechnology; 2016 Apr; 27(17):175401. PubMed ID: 26967792 [TBL] [Abstract][Full Text] [Related]
39. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Mehta RJ; Zhang Y; Karthik C; Singh B; Siegel RW; Borca-Tasciuc T; Ramanath G Nat Mater; 2012 Jan; 11(3):233-40. PubMed ID: 22231596 [TBL] [Abstract][Full Text] [Related]
40. Thermostat for high temperature and transient characterization of thin film thermoelectric materials. Singh R; Shakouri A Rev Sci Instrum; 2009 Feb; 80(2):025101. PubMed ID: 19256672 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]