BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 31022947)

  • 1. Improvement of l-Leucine Production in
    Wang YY; Zhang F; Xu JZ; Zhang WG; Chen XL; Liu LM
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31022947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions.
    Hasegawa S; Suda M; Uematsu K; Natsuma Y; Hiraga K; Jojima T; Inui M; Yukawa H
    Appl Environ Microbiol; 2013 Feb; 79(4):1250-7. PubMed ID: 23241971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corynebacterium glutamicum tailored for high-yield L-valine production.
    Blombach B; Schreiner ME; Bartek T; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):471-9. PubMed ID: 18379776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation conditions.
    Hasegawa S; Uematsu K; Natsuma Y; Suda M; Hiraga K; Jojima T; Inui M; Yukawa H
    Appl Environ Microbiol; 2012 Feb; 78(3):865-75. PubMed ID: 22138982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors enhancing L-valine production by the growth-limited L-isoleucine auxotrophic strain Corynebacterium glutamicum DeltailvA DeltapanB ilvNM13 (pECKAilvBNC).
    Denina I; Paegle L; Prouza M; Holátko J; Pátek M; Nesvera J; Ruklisha M
    J Ind Microbiol Biotechnol; 2010 Jul; 37(7):689-99. PubMed ID: 20364396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.
    Vogt M; Haas S; Klaffl S; Polen T; Eggeling L; van Ooyen J; Bott M
    Metab Eng; 2014 Mar; 22():40-52. PubMed ID: 24333966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Metabolic engineering of L-valine synthesis and secretory pathways in Corynebacterium glutamicum for higher production].
    Zhang H; Li Y; Wang X
    Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1606-1619. PubMed ID: 30394028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium of the intracellular redox state for improving cell growth and L-lysine yield of Corynebacterium glutamicum by optimal cofactor swapping.
    Xu JZ; Ruan HZ; Chen XL; Zhang F; Zhang W
    Microb Cell Fact; 2019 Apr; 18(1):65. PubMed ID: 30943966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.
    Xu J; Han M; Zhang J; Guo Y; Zhang W
    Amino Acids; 2014 Sep; 46(9):2165-75. PubMed ID: 24879631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-level and -yield production of L-leucine in engineered Escherichia coli by multistep metabolic engineering.
    Ding X; Yang W; Du X; Chen N; Xu Q; Wei M; Zhang C
    Metab Eng; 2023 Jul; 78():128-136. PubMed ID: 37286072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced valine production in Corynebacterium glutamicum with defective H+-ATPase and C-terminal truncated acetohydroxyacid synthase.
    Wada M; Hijikata N; Aoki R; Takesue N; Yokota A
    Biosci Biotechnol Biochem; 2008 Nov; 72(11):2959-65. PubMed ID: 18997402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain.
    Chen SL; Liu TS; Zhang WG; Xu JZ
    Int Microbiol; 2023 Jan; 26(1):11-24. PubMed ID: 35925494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16.
    Lu J; Brigham CJ; Plassmeier JK; Sinskey AJ
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):761-74. PubMed ID: 25081555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved l-Leucine Production in
    Feng LY; Xu JZ; Zhang WG
    Molecules; 2018 Aug; 23(9):. PubMed ID: 30134636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine- and L-Valine-Producing
    Ma Y; Chen Q; Cui Y; Du L; Shi T; Xu Q; Ma Q; Xie X; Chen N
    J Microbiol Biotechnol; 2018 Nov; 28(11):1916-1927. PubMed ID: 30562884
    [No Abstract]   [Full Text] [Related]  

  • 16. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability.
    Jiang LY; Zhang YY; Li Z; Liu JZ
    J Ind Microbiol Biotechnol; 2013 Oct; 40(10):1143-51. PubMed ID: 23836141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway.
    Hasegawa S; Jojima T; Suda M; Inui M
    Metab Eng; 2020 May; 59():24-35. PubMed ID: 31926306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
    Bückle-Vallant V; Krause FS; Messerschmidt S; Eikmanns BJ
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):297-311. PubMed ID: 24169948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance L-leucine production.
    Wang YY; Shi K; Chen P; Zhang F; Xu JZ; Zhang WG
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):485-495. PubMed ID: 32535763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation.
    Cheng F; Luozhong S; Guo Z; Yu H; Stephanopoulos G
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28869338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.