These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31022957)

  • 1. Analysis and Modelling of Non-Fourier Heat Behavior Using the Wavelet Finite Element Method.
    Yang ZB; Wang ZK; Tian SH; Chen XF
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31022957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.
    Kumar P; Kumar D; Rai KN
    J Therm Biol; 2016 Aug; 60():204-12. PubMed ID: 27503734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach.
    Kumar D; Rai KN
    J Therm Biol; 2016 Dec; 62(Pt B):170-180. PubMed ID: 27888931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Fourier Heat Conduction of Nano-Films under Ultra-Fast Laser.
    Mao Y; Liu S; Liu J; Yu M; Li X; Yang K
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical analysis of non-Fourier thermal response of lung tissue based on experimental data with application in laser therapy.
    Eltejaei I; Balavand M; Mojra A
    Comput Methods Programs Biomed; 2021 Feb; 199():105905. PubMed ID: 33360608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.
    Kumar P; Kumar D; Rai KN
    J Therm Biol; 2015; 49-50():98-105. PubMed ID: 25774032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet Element Modelling for Inviscid Fluid-Solid Coupling Problem based on Partitioned Approach.
    Yang ZB; Li HQ; Qiao BJ; Chen XF
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voronoi cell finite element method for heat conduction analysis of composite materials.
    Chen S; Hu C; Tian J; Tan D; Gong Y; Xia F; Ning S; Zhang R
    Sci Rep; 2024 May; 14(1):12083. PubMed ID: 38802453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical and numerical analysis of the dual-pulse lag heat transfer in a three-dimensional tissue subjected to a moving multi-point laser beam.
    Partovi B; Ahmadikia H; Mosharaf-Dehkordi M
    J Therm Biol; 2023 Feb; 112():103431. PubMed ID: 36796889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of dual-phase-lag bioheat transfer model during thermal therapy.
    Kumar P; Kumar D; Rai KN
    Math Biosci; 2016 Nov; 281():82-91. PubMed ID: 27621039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy.
    Kumar D; Rai KN
    J Therm Biol; 2017 Jul; 67():49-58. PubMed ID: 28558937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of fractional non-Fourier heat conduction in skin tissue.
    Goudarzi P; Azimi A
    J Therm Biol; 2019 Aug; 84():274-284. PubMed ID: 31466765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon Hydrodynamic Transport: Observation of Thermal Wave-Like Flow and Second Sound Propagation in Graphene at 100 K.
    Rezgui H
    ACS Omega; 2023 Jul; 8(26):23964-23974. PubMed ID: 37426207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of hybrid nanoparticles in hyperbolic tangent material to explore thermal transportation via finite element approach engaging Cattaneo-Christov heat flux.
    Nazir U; Sohail M; Alrabaiah H; Selim MM; Thounthong P; Park C
    PLoS One; 2021; 16(8):e0256302. PubMed ID: 34432830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation into pulse laser heating of nanoscale Au film using dual-phase-lag model.
    Ho CY; Tsai YH; Chen BC
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7205-7. PubMed ID: 24245230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid finite element-finite difference method for thermal analysis of blood vessels.
    Blanchard CH; Gutierrez G; White JA; Roemer RB
    Int J Hyperthermia; 2000; 16(4):341-53. PubMed ID: 10949130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of soft tissue thermal damage based on GPU acceleration.
    Zhang J; Hills J; Zhong Y; Shirinzadeh B; Smith J; Gu C
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):5-12. PubMed ID: 31340685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale homogenization of aluminum honeycomb structures: Thermal analysis with orthotropic representative volume element and finite element method.
    Al-Masri A; Khanafer K; Vafai K
    Heliyon; 2024 Jan; 10(2):e24166. PubMed ID: 38293394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical solution of non-Fourier heat conduction in a 3-D hollow sphere under time-space varying boundary conditions.
    Akbari S; Faghiri S; Poureslami P; Hosseinzadeh K; Behshad Shafii M
    Heliyon; 2022 Dec; 8(12):e12496. PubMed ID: 36619472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
    Liu D; Zhang J
    PLoS One; 2018; 13(3):e0194483. PubMed ID: 29547651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.