BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 3102305)

  • 1. Production of crystallins and lens-like structures in differentiation-induced neoplastic pigment cells (goldfish erythrophoroma cells) in vitro.
    Akiyama T; Matsumoto J; Ishikawa T; Eguchi G
    Differentiation; 1986; 33(1):34-44. PubMed ID: 3102305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. State of differentiation of bovine epithelial lens cells in vitro. Modulation of the synthesis and of the polymerization of specific proteins (crystallins) and non-specific proteins in relation to cell divisions.
    Simonneau L; Hervé B; Jacquemin E; Courtois Y
    Exp Cell Res; 1983 May; 145(2):433-46. PubMed ID: 6407854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation and angiogenic growth factor message in two mammalian lens epithelial cell lines.
    Kidd GL; Reddan JR; Russell P
    Differentiation; 1994 Apr; 56(1-2):67-74. PubMed ID: 8026648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transdifferentiated embryonic neuroretina cells: an in vitro system to study crystallin aggregation process.
    Pircher R; Lawrence DA; Lorinet AM; Simonneau L
    Exp Eye Res; 1987 Dec; 45(6):947-60. PubMed ID: 3428406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of crystallin expression in human lens epithelial cells during differentiation in culture and in non-lenticular tissues.
    Reddy VN; Katsura H; Arita T; Lin LR; Eguchi G; Agata K; Sawada K
    Exp Eye Res; 1991 Sep; 53(3):367-74. PubMed ID: 1936173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of mutant genes on crystallin synthesis in the forming mouse lens. 1. Dominant gene cataract-Fr].
    Platonov ES; Iakovlev MI; Koniukhov BV
    Ontogenez; 1976; 7(5):484-9. PubMed ID: 829155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The synthesis and localization of crystallins in different cell compartments of the crystalline lens in adult frogs: immunoautoradiographic and immunofluorescent research].
    Simirskiĭ VN; Fedtsova NG; Aleĭnikova KS; Mikhaĭlov AT
    Ontogenez; 1991; 22(4):381-93. PubMed ID: 1945270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in crystallin expression during transdifferentiation and subsequent ageing of embryonic chick neural retina in vitro: comparison with lens epithelium.
    Patek CE; Jeanny JC; Clayton RM
    Exp Eye Res; 1993 Nov; 57(5):527-37. PubMed ID: 8282039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PKCalpha and PKCgamma overexpression causes lentoid body formation in the N/N 1003A rabbit lens epithelial cell line.
    Wagner LM; Takemoto DJ
    Mol Vis; 2001 Jun; 7():138-44. PubMed ID: 11436000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hormones and growth factors on lens protein composition: the effect of dexamethasone and PDGF-AA.
    Vinader LM; van Genesen ST; de Jong WW; Lubsen NH
    Mol Vis; 2003 Dec; 9():723-9. PubMed ID: 14685140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental changes in membrane protein expression by chick lens cells in vivo and in vitro and the detection of main intrinsic polypeptide (MIP).
    Patek CE; Vornhagen R; Rink H; Clayton RM
    Exp Eye Res; 1986 Jul; 43(1):29-40. PubMed ID: 3089828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The appearance of alpha-crystallin in relation to cell cycle phase in the embryonic mouse lens.
    Zwaan J
    Dev Biol; 1983 Mar; 96(1):173-81. PubMed ID: 6402402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallins and their synthesis in human lens epithelial cells in tissue culture.
    Reddy VN; Lin LR; Arita T; Zigler JS; Huang QL
    Exp Eye Res; 1988 Sep; 47(3):465-78. PubMed ID: 3053225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural crest cell differentiation and carcinogenesis: capability of goldfish erythrophoroma cells for multiple differentiation and clonal polymorphism in their melanogenic variants.
    Matsumoto J; Wada K; Akiyama T
    J Invest Dermatol; 1989 May; 92(5 Suppl):255S-260S. PubMed ID: 2715660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogeny of alpha-crystallin polypeptides during the lens development of a mutant mouse.
    Brahma SK; Sanyal S
    Curr Eye Res; 1987 Nov; 6(11):1291-7. PubMed ID: 3322684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of crystallin in developing chicken lens.
    Inoue T; Miyazaki J; Hirabayashi T
    Exp Eye Res; 1992 Jul; 55(1):1-8. PubMed ID: 1397119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lens fiber cell differentiation and expression of crystallins in co-cultures of human fetal lens epithelial cells and fibroblasts.
    Nagineni CN; Bhat SP
    Exp Eye Res; 1992 Feb; 54(2):193-200. PubMed ID: 1559548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous transformation of bovine lens epithelial cells: kinetic analysis and differentiation in monolayers and in nude mice.
    Courtois Y; Simonneau L; Tassin J; Laurent MV; Malaise E
    Differentiation; 1978 Jan; 10(1):23-30. PubMed ID: 729951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of gamma crystallin by a cloned cell line from Nakano mouse lens.
    Russell P; Carper DA; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1978 Jun; 17(6):568-70. PubMed ID: 659079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Appearance of tumorous phenotypes in goldfish erythrophores transfected with ras, src, and myc oncogenes and spontaneous differentiation of the transformants in vitro.
    Matsumoto J; Akiyama T; Nemoto N; Masahito P; Ishikawa T
    J Invest Dermatol; 1993 Feb; 100(2 Suppl):214S-221S. PubMed ID: 8433010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.