These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 31023237)

  • 1. Balancing multiple objectives in conformation sampling to control decoy diversity in template-free protein structure prediction.
    Zaman AB; Shehu A
    BMC Bioinformatics; 2019 Apr; 20(1):211. PubMed ID: 31023237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
    Saleh S; Olson B; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction.
    Akhter N; Shehu A
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29351266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building maps of protein structure spaces in template-free protein structure prediction.
    Zaman AB; Shehu A
    J Bioinform Comput Biol; 2019 Dec; 17(6):1940013. PubMed ID: 32019408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to decoy set generation: designing a physical energy function having local minima with native structure characteristics.
    Keasar C; Levitt M
    J Mol Biol; 2003 May; 329(1):159-74. PubMed ID: 12742025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoy selection for protein structure prediction via extreme gradient boosting and ranking.
    Akhter N; Chennupati G; Djidjev H; Shehu A
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):189. PubMed ID: 33297949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic search and energy guidance for biased decoy sampling in ab initio protein structure prediction.
    Molloy K; Saleh S; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1162-75. PubMed ID: 24384705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Organizations of Protein Energy Landscapes: An Application on Decoy Selection in Template-Free Protein Structure Prediction.
    Akhter N; Hassan L; Rajabi Z; Barbará D; Shehu A
    Methods Mol Biol; 2019; 1958():147-171. PubMed ID: 30945218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Protein Decoy Selection via Non-Negative Matrix Factorization.
    Akhter N; Kabir KL; Chennupati G; Vangara R; Alexandrov BS; Djidjev H; Shehu A
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1670-1682. PubMed ID: 33400654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Data-Driven Evolutionary Algorithm for Mapping Multibasin Protein Energy Landscapes.
    Clausen R; Shehu A
    J Comput Biol; 2015 Sep; 22(9):844-60. PubMed ID: 26203626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. sDFIRE: Sequence-specific statistical energy function for protein structure prediction by decoy selections.
    Hoque MT; Yang Y; Mishra A; Zhou Y
    J Comput Chem; 2016 May; 37(12):1119-24. PubMed ID: 26849026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Sampling of a Biomolecular Rugged Energy Landscape.
    Rydzewski J; Jakubowski R; Nicosia G; Nowak W
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):732-739. PubMed ID: 27913358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computing energy landscape maps and structural excursions of proteins.
    Sapin E; Carr DB; De Jong KA; Shehu A
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):546. PubMed ID: 27535545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational Space Sampling Method Using Multi-Subpopulation Differential Evolution for De novo Protein Structure Prediction.
    Hao XH; Zhang GJ; Zhou XG
    IEEE Trans Nanobioscience; 2017 Oct; 16(7):618-633. PubMed ID: 28885157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable Generation of Native-Like Decoys Limits Predictive Ability in Fragment-Based Protein Structure Prediction.
    Kandathil SM; Garza-Fabre M; Handl J; Lovell SC
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31618996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principal component analysis in protein tertiary structure prediction.
    Álvarez Ó; Fernández-Martínez JL; Fernández-Brillet C; Cernea A; Fernández-Muñiz Z; Kloczkowski A
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850005. PubMed ID: 29566640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph-Based Community Detection for Decoy Selection in Template-Free Protein Structure Prediction.
    Kabir KL; Hassan L; Rajabi Z; Akhter N; Shehu A
    Molecules; 2019 Feb; 24(5):. PubMed ID: 30823390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heuristic-based tabu search algorithm for folding two-dimensional AB off-lattice model proteins.
    Liu J; Sun Y; Li G; Song B; Huang W
    Comput Biol Chem; 2013 Dec; 47():142-8. PubMed ID: 24077543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.