BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 31023878)

  • 1. Differential RA responsiveness directs formation of functionally distinct spermatogonial populations at the initiation of spermatogenesis in the mouse.
    Velte EK; Niedenberger BA; Serra ND; Singh A; Roa-DeLaCruz L; Hermann BP; Geyer CB
    Development; 2019 May; 146(12):. PubMed ID: 31023878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Spermatogonial Response to Retinoic Acid During the Onset of Spermatogenesis and Following Synchronization in the Neonatal Mouse Testis.
    Agrimson KS; Onken J; Mitchell D; Topping TB; Chiarini-Garcia H; Hogarth CA; Griswold MD
    Biol Reprod; 2016 Oct; 95(4):81. PubMed ID: 27488029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential responsiveness of spermatogonia to retinoic acid dictates precocious differentiation but not meiotic entry during steady-state spermatogenesis†.
    Johnson TA; Niedenberger BA; Kirsanov O; Harrington EV; Malachowski T; Geyer CB
    Biol Reprod; 2023 May; 108(5):822-836. PubMed ID: 36708226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testicular Architecture Is Critical for Mediation of Retinoic Acid Responsiveness by Undifferentiated Spermatogonial Subtypes in the Mouse.
    Lord T; Oatley MJ; Oatley JM
    Stem Cell Reports; 2018 Feb; 10(2):538-552. PubMed ID: 29398482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic retinoic acid-STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis.
    Endo T; Romer KA; Anderson EL; Baltus AE; de Rooij DG; Page DC
    Proc Natl Acad Sci U S A; 2015 May; 112(18):E2347-56. PubMed ID: 25902548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis.
    Endo T; Freinkman E; de Rooij DG; Page DC
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10132-E10141. PubMed ID: 29109271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marker expression reveals heterogeneity of spermatogonia in the neonatal mouse testis.
    Niedenberger BA; Busada JT; Geyer CB
    Reproduction; 2015 Apr; 149(4):329-38. PubMed ID: 25737569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinoic acid deficiency leads to an increase in spermatogonial stem number in the neonatal mouse testis, but excess retinoic acid results in no change.
    Agrimson KS; Oatley MJ; Mitchell D; Oatley JM; Griswold MD; Hogarth CA
    Dev Biol; 2017 Dec; 432(2):229-236. PubMed ID: 29037932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis.
    DeFalco T; Potter SJ; Williams AV; Waller B; Kan MJ; Capel B
    Cell Rep; 2015 Aug; 12(7):1107-19. PubMed ID: 26257171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Retinoic Acid (RA) in Spermatogonial Differentiation.
    Busada JT; Geyer CB
    Biol Reprod; 2016 Jan; 94(1):10. PubMed ID: 26559678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential RA responsiveness among subsets of mouse late progenitor spermatogonia.
    Suzuki S; McCarrey JR; Hermann BP
    Reproduction; 2021 May; 161(6):645-655. PubMed ID: 33835049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid availability drives the asynchronous initiation of spermatogonial differentiation in the mouse.
    Snyder EM; Small C; Griswold MD
    Biol Reprod; 2010 Nov; 83(5):783-90. PubMed ID: 20650878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic acid regulates Kit translation during spermatogonial differentiation in the mouse.
    Busada JT; Chappell VA; Niedenberger BA; Kaye EP; Keiper BD; Hogarth CA; Geyer CB
    Dev Biol; 2015 Jan; 397(1):140-9. PubMed ID: 25446031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riding the spermatogenic wave: profiling gene expression within neonatal germ and sertoli cells during a synchronized initial wave of spermatogenesis in mice.
    Evans E; Hogarth C; Mitchell D; Griswold M
    Biol Reprod; 2014 May; 90(5):108. PubMed ID: 24719255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse Pramel1 regulates spermatogonial development by inhibiting retinoic acid signaling during spermatogenesis.
    Yang M; Ma W; Oatley J; Liu WS
    Development; 2023 Nov; 150(21):. PubMed ID: 37781892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mammalian target of rapamycin complex 1 (mTORC1) Is required for mouse spermatogonial differentiation in vivo.
    Busada JT; Niedenberger BA; Velte EK; Keiper BD; Geyer CB
    Dev Biol; 2015 Nov; 407(1):90-102. PubMed ID: 26254600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FSH regulates RA signaling to commit spermatogonia into differentiation pathway and meiosis.
    Khanehzad M; Abbaszadeh R; Holakuyee M; Modarressi MH; Nourashrafeddin SM
    Reprod Biol Endocrinol; 2021 Jan; 19(1):4. PubMed ID: 33407539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Function and transcriptomic dynamics of Sertoli cells during prospermatogonia development in mouse testis.
    Yan RG; Li BY; Yang QE
    Reprod Biol; 2020 Dec; 20(4):525-535. PubMed ID: 32952085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling.
    Chen SR; Liu YX
    Reproduction; 2015 Apr; 149(4):R159-67. PubMed ID: 25504872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse.
    Busada JT; Kaye EP; Renegar RH; Geyer CB
    Biol Reprod; 2014 Mar; 90(3):64. PubMed ID: 24478393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.