These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 31023920)

  • 1. Low-interfacial toughness materials for effective large-scale deicing.
    Golovin K; Dhyani A; Thouless MD; Tuteja A
    Science; 2019 Apr; 364(6438):371-375. PubMed ID: 31023920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Durable and Scalable Candle Soot Icephobic Coating with Nucleation and Fracture Mechanism.
    Jamil MI; Zhan X; Chen F; Cheng D; Zhang Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31532-31542. PubMed ID: 31368296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasicrystalline Coatings Exhibit Durable Low Interfacial Toughness with Ice.
    Mohseni M; Recla L; Mora J; Gallego PG; Agüero A; Golovin K
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36517-36526. PubMed ID: 34288651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing durable icephobic surfaces.
    Golovin K; Kobaku SP; Lee DH; DiLoreto ET; Mabry JM; Tuteja A
    Sci Adv; 2016 Mar; 2(3):e1501496. PubMed ID: 26998520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Doping SiO
    Yu Y; Chen L; Weng D; Hou Y; Pang Z; Zhan Z; Wang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):48250-48261. PubMed ID: 36240235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Icephobic Behavior of UV-Cured Polymer Networks Incorporated into Slippery Lubricant-Infused Porous Surfaces: Improving SLIPS Durability.
    Coady MJ; Wood M; Wallace GQ; Nielsen KE; Kietzig AM; Lagugné-Labarthet F; Ragogna PJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2890-2896. PubMed ID: 29155549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predictive framework for the design and fabrication of icephobic polymers.
    Golovin K; Tuteja A
    Sci Adv; 2017 Sep; 3(9):e1701617. PubMed ID: 28948227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart low interfacial toughness coatings for on-demand de-icing without melting.
    Azimi Dijvejin Z; Jain MC; Kozak R; Zarifi MH; Golovin K
    Nat Commun; 2022 Aug; 13(1):5119. PubMed ID: 36045129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationally Regulating the Mechanical Performance of Porous PDMS Coatings for the Enhanced Icephobicity toward Large-Scale Ice.
    Zeng C; Shen Y; Tao J; Chen H; Wang Z; Liu S; Lu D; Xie X
    Langmuir; 2022 Jan; 38(3):937-944. PubMed ID: 34894687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft and Rigid Integrated Durable Coating for Large-Scale Deicing.
    Wang P; Yang M; Zheng B; Guan X; Liao Y; Yue Y; Duan W; Zhang Y
    Langmuir; 2023 Jan; 39(1):403-410. PubMed ID: 36534638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS.
    Gao S; Liu B; Peng J; Zhu K; Zhao Y; Li X; Yuan X
    ACS Appl Mater Interfaces; 2019 Jan; 11(4):4654-4666. PubMed ID: 30600999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.
    Zhuo Y; Håkonsen V; He Z; Xiao S; He J; Zhang Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between water wettability and ice adhesion.
    Meuler AJ; Smith JD; Varanasi KK; Mabry JM; McKinley GH; Cohen RE
    ACS Appl Mater Interfaces; 2010 Nov; 2(11):3100-10. PubMed ID: 20949900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the role of hollow sub-surface structures in reducing ice adhesion strength.
    He Z; Zhuo Y; Wang F; He J; Zhang Z
    Soft Matter; 2019 Apr; 15(13):2905-2910. PubMed ID: 30855632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radio-frequency-transparent, electrically conductive graphene nanoribbon thin films as deicing heating layers.
    Volman V; Zhu Y; Raji AR; Genorio B; Lu W; Xiang C; Kittrell C; Tour JM
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):298-304. PubMed ID: 24328320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
    Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J
    ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic SiC/CNTs Coatings with Photothermal Deicing and Passive Anti-Icing Properties.
    Jiang G; Chen L; Zhang S; Huang H
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36505-36511. PubMed ID: 30273481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process.
    Xu Y; Zhang G; Li L; Xu C; Lv X; Zhang H; Yao W
    J Colloid Interface Sci; 2019 Sep; 552():613-621. PubMed ID: 31170614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Icephobic surfaces: Definition and figures of merit.
    Irajizad P; Nazifi S; Ghasemi H
    Adv Colloid Interface Sci; 2019 Jul; 269():203-218. PubMed ID: 31096074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.