These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. A predictive framework for the design and fabrication of icephobic polymers. Golovin K; Tuteja A Sci Adv; 2017 Sep; 3(9):e1701617. PubMed ID: 28948227 [TBL] [Abstract][Full Text] [Related]
9. Rationally Regulating the Mechanical Performance of Porous PDMS Coatings for the Enhanced Icephobicity toward Large-Scale Ice. Zeng C; Shen Y; Tao J; Chen H; Wang Z; Liu S; Lu D; Xie X Langmuir; 2022 Jan; 38(3):937-944. PubMed ID: 34894687 [TBL] [Abstract][Full Text] [Related]
10. Erosion-resistant materials demonstrate low interfacial toughness with ice and superior durability. Yang Q; Dolatabadi A; Golovin K Mater Horiz; 2023 Oct; 10(10):4541-4550. PubMed ID: 37787055 [TBL] [Abstract][Full Text] [Related]
11. Soft and Rigid Integrated Durable Coating for Large-Scale Deicing. Wang P; Yang M; Zheng B; Guan X; Liao Y; Yue Y; Duan W; Zhang Y Langmuir; 2023 Jan; 39(1):403-410. PubMed ID: 36534638 [TBL] [Abstract][Full Text] [Related]
12. Icephobic Durability of Branched PDMS Slippage Coatings Co-Cross-Linked by Functionalized POSS. Gao S; Liu B; Peng J; Zhu K; Zhao Y; Li X; Yuan X ACS Appl Mater Interfaces; 2019 Jan; 11(4):4654-4666. PubMed ID: 30600999 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function. Zhuo Y; Håkonsen V; He Z; Xiao S; He J; Zhang Z ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258 [TBL] [Abstract][Full Text] [Related]
14. Relationships between water wettability and ice adhesion. Meuler AJ; Smith JD; Varanasi KK; Mabry JM; McKinley GH; Cohen RE ACS Appl Mater Interfaces; 2010 Nov; 2(11):3100-10. PubMed ID: 20949900 [TBL] [Abstract][Full Text] [Related]
15. Understanding the role of hollow sub-surface structures in reducing ice adhesion strength. He Z; Zhuo Y; Wang F; He J; Zhang Z Soft Matter; 2019 Apr; 15(13):2905-2910. PubMed ID: 30855632 [TBL] [Abstract][Full Text] [Related]
16. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures. Sarshar MA; Song D; Swarctz C; Lee J; Choi CH Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623 [TBL] [Abstract][Full Text] [Related]
17. Radio-frequency-transparent, electrically conductive graphene nanoribbon thin films as deicing heating layers. Volman V; Zhu Y; Raji AR; Genorio B; Lu W; Xiang C; Kittrell C; Tour JM ACS Appl Mater Interfaces; 2014 Jan; 6(1):298-304. PubMed ID: 24328320 [TBL] [Abstract][Full Text] [Related]
18. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067 [TBL] [Abstract][Full Text] [Related]
19. Superhydrophobic SiC/CNTs Coatings with Photothermal Deicing and Passive Anti-Icing Properties. Jiang G; Chen L; Zhang S; Huang H ACS Appl Mater Interfaces; 2018 Oct; 10(42):36505-36511. PubMed ID: 30273481 [TBL] [Abstract][Full Text] [Related]
20. Icephobic behaviors of superhydrophobic amorphous carbon nano-films synthesized from a flame process. Xu Y; Zhang G; Li L; Xu C; Lv X; Zhang H; Yao W J Colloid Interface Sci; 2019 Sep; 552():613-621. PubMed ID: 31170614 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]