BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31024087)

  • 1. A Biotransformation Process for Production of Genistein from Sophoricoside by a Strain of Rhizopus oryza.
    Mei J; Chen X; Liu J; Yi Y; Zhang Y; Ying G
    Sci Rep; 2019 Apr; 9(1):6564. PubMed ID: 31024087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective bioconversion of sophoricoside to genistein from Fructus sophorae using immobilized Aspergillus niger and Yeast.
    Feng C; Jin S; Xia XX; Guan Y; Luo M; Zu YG; Fu YJ
    World J Microbiol Biotechnol; 2015 Jan; 31(1):187-97. PubMed ID: 25392205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HPLC-UV/HRMS methods for the unambiguous detection of adulterations of
    Bampali E; Germer S; Bauer R; Kulić Ž
    Pharm Biol; 2021 Dec; 59(1):438-443. PubMed ID: 33886418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic formation of ether linkage producing shoyuflavones from genistein and (+/-)-trans-epoxysuccinic acid.
    Kinoshita E; Murakami S; Aishima T
    J Agric Food Chem; 2000 Jun; 48(6):2149-54. PubMed ID: 10888513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estrogenic activity of a naringinase-treated extract of Sophora japonica cultivated in Egypt.
    El-Halawany AM; Chung MH; Abdallah HM; Nishihara T; Hattori M
    Pharm Biol; 2010 Feb; 48(2):177-81. PubMed ID: 20645836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of two isoflavone aglycones in black soymilk by Rhizopus oligosporus NTU 5 in a plastic composite support bioreactor.
    Liu CT; Erh MH; Lin SP; Lo KY; Chen KI; Cheng KC
    J Sci Food Agric; 2016 Aug; 96(11):3779-86. PubMed ID: 26676892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic transformation of polydatin to resveratrol by piceid-β-D-glucosidase from Aspergillus oryzae.
    Chen M; Li D; Gao Z; Zhang C
    Bioprocess Biosyst Eng; 2014 Jul; 37(7):1411-6. PubMed ID: 24362562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetics and excretion study of sophoricoside and its metabolite in rats by liquid chromatography tandem mass spectrometry.
    Zhi X; Sheng N; Yuan L; Zhang Z; Jia P; Zhang X; Zhang L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():154-62. PubMed ID: 24342508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme.
    Abdella A; El-Baz AF; Ibrahim IA; Mahrous EE; Yang ST
    Nat Prod Res; 2018 Oct; 32(20):2382-2391. PubMed ID: 29224366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sophoricoside analogs as the IL-5 inhibitors from Sophora japonica.
    Min B; Oh SR; Lee HK; Takatsu K; Chang IM; Min KR; Kim Y
    Planta Med; 1999 Jun; 65(5):408-12. PubMed ID: 10418325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of sophoricoside and genistein on biological characteristics of osteoblasts].
    Xu Y; Chen WZ; Du N
    Zhong Xi Yi Jie He Xue Bao; 2009 Mar; 7(3):223-7. PubMed ID: 19284950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi.
    Lee IH; Chou CC
    J Agric Food Chem; 2006 Feb; 54(4):1309-14. PubMed ID: 16478253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation.
    Zhou Z; Du G; Hua Z; Zhou J; Chen J
    Bioresour Technol; 2011 Oct; 102(20):9345-9. PubMed ID: 21880482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular amylase(s) production by fungi Botryodiplodia theobromae and Rhizopus oryzae grown on cassava starch residue.
    Ray RC
    J Environ Biol; 2004 Oct; 25(4):489-95. PubMed ID: 15907080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The interaction between genistein and beta-glucosidase].
    Zhang YD; Gao QQ; Yu CH
    Yao Xue Xue Bao; 2011 Jun; 46(6):677-82. PubMed ID: 21882528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production.
    Liu Y; Lv C; Xu Q; Li S; Huang H; Ouyang P
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):323-8. PubMed ID: 25190324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimized fed-batch culture strategy integrated with a one-step fermentation improves L-lactic acid production by Rhizopus oryzae.
    Fu Y; Sun X; Zhu H; Jiang R; Luo X; Yin L
    World J Microbiol Biotechnol; 2018 May; 34(6):74. PubMed ID: 29786118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of proteases by Rhizopus oligosporus IHS13 in low-cost medium by solid-state fermentation.
    Haq IU; Mukhtar H
    J Basic Microbiol; 2004; 44(4):280-7. PubMed ID: 15266600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endoglucanase and total cellulase from newly isolated Rhizopus oryzae and Trichoderma reesei: production, characterization, and thermal stability.
    Kupski L; Pagnussatt FA; Buffon JG; Furlong EB
    Appl Biochem Biotechnol; 2014 Jan; 172(1):458-68. PubMed ID: 24092451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological synthesis of genistein in
    Kim BG
    J Microbiol Biotechnol; 2019 May; 30(5):770-776. PubMed ID: 32482944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.