BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 31024153)

  • 21. Mechanisms of carbon dioxide acquisition and CO
    Matsuda Y; Hopkinson BM; Nakajima K; Dupont CL; Tsuji Y
    Philos Trans R Soc Lond B Biol Sci; 2017 Sep; 372(1728):. PubMed ID: 28717013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii.
    Alterio V; Langella E; Viparelli F; Vullo D; Ascione G; Dathan NA; Morel FM; Supuran CT; De Simone G; Monti SM
    Biochimie; 2012 May; 94(5):1232-41. PubMed ID: 22381359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon Dioxide Concentration Mechanisms in Natural Populations of Marine Diatoms: Insights From
    Pierella Karlusich JJ; Bowler C; Biswas H
    Front Plant Sci; 2021; 12():657821. PubMed ID: 33995455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insights on the Functions and Ecophysiological Relevance of the Diverse Carbonic Anhydrases in Microalgae.
    Jensen EL; Maberly SC; Gontero B
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32331234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ocean acidification modulates expression of genes and physiological performance of a marine diatom.
    Li Y; Zhuang S; Wu Y; Ren H; Chen F; Lin X; Wang K; Beardall J; Gao K
    PLoS One; 2017; 12(2):e0170970. PubMed ID: 28192486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responses of carbonic anhydrases and Rubisco to abrupt CO
    Zeng X; Jin P; Zou D; Liu Y; Xia J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prokaryotic carbonic anhydrases.
    Smith KS; Ferry JG
    FEMS Microbiol Rev; 2000 Oct; 24(4):335-66. PubMed ID: 10978542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ecological imperatives for aquatic CO2-concentrating mechanisms.
    Maberly SC; Gontero B
    J Exp Bot; 2017 Jun; 68(14):3797-3814. PubMed ID: 28645178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox regulation of carbonic anhydrases via thioredoxin in chloroplast of the marine diatom Phaeodactylum tricornutum.
    Kikutani S; Tanaka R; Yamazaki Y; Hara S; Hisabori T; Kroth PG; Matsuda Y
    J Biol Chem; 2012 Jun; 287(24):20689-700. PubMed ID: 22535967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of the marine diatom Thalassiosira pseudonana to changes in CO
    Clement R; Lignon S; Mansuelle P; Jensen E; Pophillat M; Lebrun R; Denis Y; Puppo C; Maberly SC; Gontero B
    Sci Rep; 2017 Feb; 7():42333. PubMed ID: 28181560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolutionarily distinct strategies for the acquisition of inorganic carbon from seawater in marine diatoms.
    Tsuji Y; Mahardika A; Matsuda Y
    J Exp Bot; 2017 Jun; 68(14):3949-3958. PubMed ID: 28398591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The requirement for external carbonic anhydrase in diatoms is influenced by the supply and demand for dissolved inorganic carbon.
    Keys M; Hopkinson B; Highfield A; Chrachri A; Brownlee C; Wheeler GL
    J Phycol; 2024 Feb; 60(1):29-45. PubMed ID: 38127095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unicellular C4 photosynthesis in a marine diatom.
    Reinfelder JR; Kraepiel AM; Morel FM
    Nature; 2000 Oct; 407(6807):996-9. PubMed ID: 11069177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii.
    Del Prete S; Vullo D; Scozzafava A; Capasso C; Supuran CT
    Bioorg Med Chem; 2014 Jan; 22(1):531-7. PubMed ID: 24268544
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Carbonic Anhydrase Serves as an Important Acid-Base Regulator in Pacific Oyster Crassostrea gigas Exposed to Elevated CO
    Wang X; Wang M; Jia Z; Qiu L; Wang L; Zhang A; Song L
    Mar Biotechnol (NY); 2017 Feb; 19(1):22-35. PubMed ID: 28204970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells.
    Chrachri A; Hopkinson BM; Flynn K; Brownlee C; Wheeler GL
    Nat Commun; 2018 Jan; 9(1):74. PubMed ID: 29311545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii.
    Mitra M; Lato SM; Ynalvez RA; Xiao Y; Moroney JV
    Plant Physiol; 2004 May; 135(1):173-82. PubMed ID: 15122009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii.
    Lane TW; Morel FM
    Plant Physiol; 2000 May; 123(1):345-52. PubMed ID: 10806251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification of extracellular carbonic anhydrase activity in two marine diatoms and investigation of its role.
    Hopkinson BM; Meile C; Shen C
    Plant Physiol; 2013 Jun; 162(2):1142-52. PubMed ID: 23656892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential for co-evolution of CO2-concentrating mechanisms and Rubisco in diatoms.
    Young JN; Hopkinson BM
    J Exp Bot; 2017 Jun; 68(14):3751-3762. PubMed ID: 28645158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.