These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31024269)

  • 1. Sensory Cues Modulate Smooth Pursuit and Active Sensing Movements.
    Uyanik I; Stamper SA; Cowan NJ; Fortune ES
    Front Behav Neurosci; 2019; 13():59. PubMed ID: 31024269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed-Loop Control of Active Sensing Movements Regulates Sensory Slip.
    Biswas D; Arend LA; Stamper SA; Vágvölgyi BP; Fortune ES; Cowan NJ
    Curr Biol; 2018 Dec; 28(24):4029-4036.e4. PubMed ID: 30503617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active sensing via movement shapes spatiotemporal patterns of sensory feedback.
    Stamper SA; Roth E; Cowan NJ; Fortune ES
    J Exp Biol; 2012 May; 215(Pt 9):1567-74. PubMed ID: 22496294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic modulation of visual and electrosensory gains for locomotor control.
    Sutton EE; Demir A; Stamper SA; Fortune ES; Cowan NJ
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27170650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salience of multisensory feedback regulates behavioral variability.
    Comertler MS; Uyanik I
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34768247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion parallax in electric sensing.
    Pedraja F; Hofmann V; Lucas KM; Young C; Engelmann J; Lewis JE
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):573-577. PubMed ID: 29295924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive changes in smooth pursuit eye movements induced by cross-axis pursuit-vestibular interaction training in monkeys.
    Fukushima K; Wells SG; Yamanobe T; Takeichi N; Shinmei Y; Fukushima J
    Exp Brain Res; 2001 Aug; 139(4):473-81. PubMed ID: 11534872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus predictability mediates a switch in locomotor smooth pursuit performance for Eigenmannia virescens.
    Roth E; Zhuang K; Stamper SA; Fortune ES; Cowan NJ
    J Exp Biol; 2011 Apr; 214(Pt 7):1170-80. PubMed ID: 21389203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in locomotor dynamics reveals the critical role of feedback in task control.
    Uyanik I; Sefati S; Stamper SA; Cho KA; Ankarali MM; Fortune ES; Cowan NJ
    Elife; 2020 Jan; 9():. PubMed ID: 31971509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive Smooth Pursuit Eye Movements.
    Kowler E; Rubinstein JF; Santos EM; Wang J
    Annu Rev Vis Sci; 2019 Sep; 5():223-246. PubMed ID: 31283450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrosensory Contrast Signals for Interacting Weakly Electric Fish.
    Yu N; Hupe G; Longtin A; Lewis JE
    Front Integr Neurosci; 2019; 13():36. PubMed ID: 31417374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer function of the rhesus macaque oculomotor system for small-amplitude slow motion trajectories.
    Skinner J; Buonocore A; Hafed ZM
    J Neurophysiol; 2019 Feb; 121(2):513-529. PubMed ID: 30540500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish.
    Ben-Simon A; Ben-Shahar O; Vasserman G; Segev R
    J Exp Biol; 2012 Dec; 215(Pt 24):4248-54. PubMed ID: 22972882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory Flow as a Basis for a Novel Distance Cue in Freely Behaving Electric Fish.
    Hofmann V; Sanguinetti-Scheck JI; Gómez-Sena L; Engelmann J
    J Neurosci; 2017 Jan; 37(2):302-312. PubMed ID: 28077710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volitional control of anticipatory ocular pursuit responses under stabilised image conditions in humans.
    Barnes G; Goodbody S; Collins S
    Exp Brain Res; 1995; 106(2):301-17. PubMed ID: 8566195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor adaptation to destabilizing dynamics in weakly electric fish.
    Yang Y; Yared DG; Fortune ES; Cowan NJ
    Curr Biol; 2024 May; 34(10):2118-2131.e5. PubMed ID: 38692275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1614-26. PubMed ID: 10980031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Weakly electric fish learn both visual and electrosensory cues in a multisensory object discrimination task.
    Dangelmayer S; Benda J; Grewe J
    J Physiol Paris; 2016 Oct; 110(3 Pt B):182-189. PubMed ID: 27825970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual tracking neurons in primate area MST are activated by smooth-pursuit eye movements of an "imaginary" target.
    Ilg UJ; Thier P
    J Neurophysiol; 2003 Sep; 90(3):1489-502. PubMed ID: 12736240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal visual-vestibular interaction and smooth pursuit tracking in psychosis: implications for cerebellar involvement.
    Cooper PM; Pivik RT
    J Psychiatry Neurosci; 1991 Mar; 16(1):30-40. PubMed ID: 2049368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.