These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31024497)
1. Fitness Features Involved in the Biocontrol Interaction of Arrebola E; Tienda S; Vida C; de Vicente A; Cazorla FM Front Microbiol; 2019; 10():719. PubMed ID: 31024497 [TBL] [Abstract][Full Text] [Related]
2. Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. Calderón CE; de Vicente A; Cazorla FM FEMS Microbiol Ecol; 2014 Jul; 89(1):20-31. PubMed ID: 24641321 [TBL] [Abstract][Full Text] [Related]
3. Polyhydroxyalkanoate production by the plant beneficial rhizobacterium Pseudomonas chlororaphis PCL1606 influences survival and rhizospheric performance. Tienda S; Gutiérrez-Barranquero JA; Padilla-Roji I; Arrebola E; de Vicente A; Cazorla FM Microbiol Res; 2024 Jan; 278():127527. PubMed ID: 37863020 [TBL] [Abstract][Full Text] [Related]
4. The Compound 2-Hexyl, 5-Propyl Resorcinol Has a Key Role in Biofilm Formation by the Biocontrol Rhizobacterium Calderón CE; Tienda S; Heredia-Ponce Z; Arrebola E; Cárcamo-Oyarce G; Eberl L; Cazorla FM Front Microbiol; 2019; 10():396. PubMed ID: 30873149 [TBL] [Abstract][Full Text] [Related]
5. Soil Application of a Formulated Biocontrol Rhizobacterium, Tienda S; Vida C; Lagendijk E; de Weert S; Linares I; González-Fernández J; Guirado E; de Vicente A; Cazorla FM Front Microbiol; 2020; 11():1874. PubMed ID: 32849458 [TBL] [Abstract][Full Text] [Related]
6. Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Arrebola E; Aprile FR; Calderón CE; de Vicente A; Cazorla FM Int Microbiol; 2022 Nov; 25(4):679-689. PubMed ID: 35670867 [TBL] [Abstract][Full Text] [Related]
7. Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of Pseudomonas chlororaphis PCL1606. Heredia-Ponce Z; Gutiérrez-Barranquero JA; Purtschert-Montenegro G; Eberl L; de Vicente A; Cazorla FM Environ Microbiol; 2021 Apr; 23(4):2086-2101. PubMed ID: 33314481 [TBL] [Abstract][Full Text] [Related]
8. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol. Calderón CE; Ramos C; de Vicente A; Cazorla FM Mol Plant Microbe Interact; 2015 Mar; 28(3):249-60. PubMed ID: 25679537 [TBL] [Abstract][Full Text] [Related]
9. The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Calderón CE; Pérez-García A; de Vicente A; Cazorla FM Mol Plant Microbe Interact; 2013 May; 26(5):554-65. PubMed ID: 23547906 [TBL] [Abstract][Full Text] [Related]
10. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Cazorla FM; Duckett SB; Bergström ET; Noreen S; Odijk R; Lugtenberg BJ; Thomas-Oates JE; Bloemberg GV Mol Plant Microbe Interact; 2006 Apr; 19(4):418-28. PubMed ID: 16610745 [TBL] [Abstract][Full Text] [Related]
11. Impact of motility and chemotaxis features of the rhizobacterium Pseudomonas chlororaphis PCL1606 on its biocontrol of avocado white root rot. Polonio Á; Vida C; de Vicente A; Cazorla FM Int Microbiol; 2017 Jun; 20(2):95-104. PubMed ID: 28617527 [TBL] [Abstract][Full Text] [Related]
12. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Tienda S; Vida C; Villar-Moreno R; de Vicente A; Cazorla FM Microbiol Res; 2024 Aug; 285():127761. PubMed ID: 38761488 [TBL] [Abstract][Full Text] [Related]
13. Aer Receptors Influence the Arrebola E; Cazorla FM Front Microbiol; 2020; 11():1560. PubMed ID: 32754135 [No Abstract] [Full Text] [Related]
14. Pseudomonas chlororaphis metabolites as biocontrol promoters of plant health and improved crop yield. Raio A; Puopolo G World J Microbiol Biotechnol; 2021 May; 37(6):99. PubMed ID: 33978868 [TBL] [Abstract][Full Text] [Related]
15. Draft Genome Sequence of the Rhizobacterium Vida C; de Vicente A; Cazorla FM Genome Announc; 2017 Apr; 5(14):. PubMed ID: 28385848 [TBL] [Abstract][Full Text] [Related]
16. Interplay between rhizospheric Villar-Moreno R; Tienda S; Gutiérrez-Barranquero JA; Carrión VJ; de Vicente A; Cazorla FM; Arrebola E Front Plant Sci; 2022; 13():1063182. PubMed ID: 36589057 [No Abstract] [Full Text] [Related]
17. Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Pliego C; Crespo-Gómez JI; Pintado A; Pérez-Martínez I; de Vicente A; Cazorla FM; Ramos C Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478234 [TBL] [Abstract][Full Text] [Related]
18. darR and darS are regulatory genes that modulate 2-hexyl, 5-propyl resorcinol transcription in Pseudomonas chlororaphis PCL1606. Calderón CE; Carrión VJ; de Vicente A; Cazorla FM Microbiology (Reading); 2014 Dec; 160(Pt 12):2670-2680. PubMed ID: 25234473 [TBL] [Abstract][Full Text] [Related]
19. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Jain R; Pandey A Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000 [TBL] [Abstract][Full Text] [Related]
20. Antifungal activity of a soil isolate of Pseudomonas chlororaphis against medically important dermatophytes and identification of a phenazine-like compound as its bioactive metabolite. Ranjbariyan A; Shams-Ghahfarokhi M; Razzaghi-Abyaneh M J Mycol Med; 2014 Jun; 24(2):e57-64. PubMed ID: 24746720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]