These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31024588)

  • 21. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees.
    Potkar R; Recla J; Busov V
    Biochem Biophys Res Commun; 2013 Feb; 431(3):512-8. PubMed ID: 23321309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species.
    Basler D; Körner C
    Tree Physiol; 2014 Apr; 34(4):377-88. PubMed ID: 24713858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees.
    Borchert R; Rivera G
    Tree Physiol; 2001 Mar; 21(4):213-21. PubMed ID: 11276415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Models of the spring phenology of boreal and temperate trees: Is there something missing?
    Linkosalo T; Häkkinen R; Hänninen H
    Tree Physiol; 2006 Sep; 26(9):1165-72. PubMed ID: 16740492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plant Development: Dual Roles of Poplar SVL in Vegetative Bud Dormancy.
    Busov VB
    Curr Biol; 2019 Jan; 29(2):R68-R70. PubMed ID: 30668953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar.
    Ko JH; Prassinos C; Keathley D; Han KH
    Tree Physiol; 2011 Feb; 31(2):208-25. PubMed ID: 21383024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological Characterization and Gene Expression Profiling during Bud Development in a Tropical Perennial,
    Zhang H; Li H; Lai B; Xia H; Wang H; Huang X
    Front Plant Sci; 2016; 7():1517. PubMed ID: 27833615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach.
    Yu J; Conrad AO; Decroocq V; Zhebentyayeva T; Williams DE; Bennett D; Roch G; Audergon JM; Dardick C; Liu Z; Abbott AG; Staton ME
    Front Plant Sci; 2020; 11():180. PubMed ID: 32180783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA methylation and small interference RNAs participate in the regulation of MADS-box genes involved in dormancy in sweet cherry (Prunus avium L.).
    Rothkegel K; Sánchez E; Montes C; Greve M; Tapia S; Bravo S; Prieto H; Almeida AM
    Tree Physiol; 2017 Dec; 37(12):1739-1751. PubMed ID: 28541567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of DEMETER, a DNA demethylase, promotes early apical bud maturation in poplar.
    Conde D; Moreno-Cortés A; Dervinis C; Ramos-Sánchez JM; Kirst M; Perales M; González-Melendi P; Allona I
    Plant Cell Environ; 2017 Nov; 40(11):2806-2819. PubMed ID: 28810288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential expression proteins associated with bud dormancy release during chilling treatment of tree peony (Paeonia suffruticosa).
    Zhang YX; Yu D; Tian XL; Liu CY; Gai SP; Zheng GS
    Plant Biol (Stuttg); 2015 Jan; 17(1):114-22. PubMed ID: 25091021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bud Dormancy in Perennial Fruit Tree Species: A Pivotal Role for Oxidative Cues.
    Beauvieux R; Wenden B; Dirlewanger E
    Front Plant Sci; 2018; 9():657. PubMed ID: 29868101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The MADS-Box Gene
    Moser M; Asquini E; Miolli GV; Weigl K; Hanke MV; Flachowsky H; Si-Ammour A
    Front Plant Sci; 2020; 11():1003. PubMed ID: 32733512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping of Candidate Genes Involved in Bud Dormancy and Flowering Time in Sweet Cherry (Prunus avium).
    Castède S; Campoy JA; Le Dantec L; Quero-García J; Barreneche T; Wenden B; Dirlewanger E
    PLoS One; 2015; 10(11):e0143250. PubMed ID: 26587668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmentally Sensitive Molecular Switches Drive Poplar Phenology.
    Maurya JP; Triozzi PM; Bhalerao RP; Perales M
    Front Plant Sci; 2018; 9():1873. PubMed ID: 30619428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoperiodic control of dormancy in Sedum telephium and some other herbaceous perennial plants.
    Heide OM
    Physiol Plant; 2001 Nov; 113(3):332-337. PubMed ID: 12060277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dormant but Active: Chilling Accumulation Modulates the Epigenome and Transcriptome of
    Rothkegel K; Sandoval P; Soto E; Ulloa L; Riveros A; Lillo-Carmona V; Cáceres-Molina J; Almeida AM; Meneses C
    Front Plant Sci; 2020; 11():1115. PubMed ID: 32765576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dormancy of trees in winter.
    Perry TO
    Science; 1971 Jan; 171(3966):29-36. PubMed ID: 17737985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and Expression of Bud
    Quesada-Traver C; Guerrero BI; Badenes ML; Rodrigo J; Ríos G; Lloret A
    Front Plant Sci; 2020; 11():1288. PubMed ID: 32973847
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region.
    Yang Y; Wu Z; Guo L; He HS; Ling Y; Wang L; Zong S; Na R; Du H; Li MH
    Sci Total Environ; 2020 Jul; 725():138323. PubMed ID: 32298892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.